Selected topics in finite element methods = You xian yuan fang fa xuan jiang 🔍
ZHIMING CHEN,HAIJUN WU
SCIENCE PRESS BEIJING, Series in information and computational science, Beijing, 2010
中文 [zh] · PDF · 2.6MB · 2010 · 📗 未知类型的图书 · 🚀/duxiu/upload · Save
描述
该书结合作者的科研成果,介绍了偏微分方程有限元方法中的若干经典及前沿专题。
备用文件名
upload/chinese_2025_10/sciencereading1/B158CE8419EAA4B7C95B325CC63FE896F000.pdf
备选标题
Selected Topics in Finite Element Methods : [英文] = 有限元方法选讲
备选标题
Selected Topics in Finite Element Methods (In English)
备选标题
Microsoft Word - stif FM_new_.doc
备选作者
Administrator
备选作者
陈志明,武海军
备用出版商
中国美术学院出版社
备用出版商
科学出版社
备用版本
1, Series in information and computational science, 2010-08
备用版本
Xin xi yu ji suan ke xue cong shu, Di 1 ban, Beijing, 2010
备用版本
China, People's Republic, China
备用版本
1991
元数据中的注释
producers:
Acrobat Distiller 7.0 (Windows)
Acrobat Distiller 7.0 (Windows)
备用描述
目录 8
Preface 6
Chapter 1 Variational Formulation of Elliptic Problems 11
1.1 Basic concepts of Sobolev space 11
1.2 Variational formulation 18
1.3 Exercises 21
Chapter 2 Finite Element Methods for Elliptic Equations 23
2.1 Galerkin method for variational problems 23
2.2 The construction of finite element spaces 25
2.2.1 The finite element 25
2.3 Computational consideration 30
2.4 Exercises 34
Chapter 3 Convergence Theory of Finite Element Methods 35
3.1 Interpolation theory in Sobolev spaces 35
3.2 The energy error estimate 41
3.3 The L 2 error estimate 42
3.4 Exercises 43
Chapter 4 Adaptive Finite Element Methods 44
4.1 An example with singularity 44
4.2 A posteriori error analysis 46
4.2.1 The Clement interpolation operator 46
4.2.2 A posteriori error estimates 49
4.3 Adaptive algorithm 51
4.4 Convergence analysis 52
4.5 Exercises 56
Chapter 5 Finite Element Multigrid Methods 57
5.1 The model problem 57
5.2 Iterative methods 58
5.3 The multigrid V-cycle algorithm 61
5.4 The finite element multigrid V-cycle algorithm 67
5.5 The full multigrid and work estimate 68
5.6 The adaptive multigrid method 69
5.7 Exercises 70
Chapter 6 Mixed Finite Element Methods 71
6.1 Abstract framework 71
6.2 The Poisson equation as a mixed problem 76
6.3 The Stokes problem 80
6.4 Exercises 83
Chapter 7 Finite Element Methods for Parabolic Problems 84
7.1 The weak solutions of parabolic equations 84
7.2 The semidiscrete approximation 88
7.3 The fully discrete approximation 92
7.4 A posteriori error analysis 96
7.5 The adaptive algorithm 102
7.6 Exercises 107
Chapter 8 Finite Element Methods for Maxwell Equations 108
8.1 The function space H(curl;Ω) 109
8.2 The curl conforming finite element approximation 116
8.3 Finite element methods for time harmonic Maxwell equations 121
8.4 A posteriori error analysis 124
8.5 Exercises 130
Chapter 9 Multiscale Finite Element Methods for Elliptic Equations 132
9.1 The homogenization result 132
9.2 The multiscale finite element method 136
9.2.1 Error estimate when h ε 138
9.3 The over-sampling multiscale finite element method 141
9.4 Exercises 147
Chapter 10 Implementations 148
10.1 A brief introduction to the MATLAB PDE Toolbox 148
10.1.1 A first example—Poisson equation on the unit disk 149
10.1.2 The mesh data structure 150
10.1.3 A quick reference 153
10.2 Codes for Example 4.1—L-shaped domain problem on uniform meshes 154
10.2.1 The main script 154
10.2.2 H1 error 155
10.2.3 Seven-point Gauss quadrature rule 155
10.3 Codes for Example 4.6|L-shaped domain problem on adaptive meshes 156
10.4 Implementation of the multigrid V-cycle algorithm 158
10.4.1 Matrix versions for the multigrid V-cycle algorithm and FMG 158
10.4.2 Code for FMG 159
10.4.3 Code for the multigrid V-cycle algorithm 160
10.4.4 The"newest vertex bisection"algorithm for mesh refinements 162
10.5 Exercises 168
Bibliography 170
参考文献 8
Preface 6
Chapter 1 Variational Formulation of Elliptic Problems 11
1.1 Basic concepts of Sobolev space 11
1.2 Variational formulation 18
1.3 Exercises 21
Chapter 2 Finite Element Methods for Elliptic Equations 23
2.1 Galerkin method for variational problems 23
2.2 The construction of finite element spaces 25
2.2.1 The finite element 25
2.3 Computational consideration 30
2.4 Exercises 34
Chapter 3 Convergence Theory of Finite Element Methods 35
3.1 Interpolation theory in Sobolev spaces 35
3.2 The energy error estimate 41
3.3 The L 2 error estimate 42
3.4 Exercises 43
Chapter 4 Adaptive Finite Element Methods 44
4.1 An example with singularity 44
4.2 A posteriori error analysis 46
4.2.1 The Clement interpolation operator 46
4.2.2 A posteriori error estimates 49
4.3 Adaptive algorithm 51
4.4 Convergence analysis 52
4.5 Exercises 56
Chapter 5 Finite Element Multigrid Methods 57
5.1 The model problem 57
5.2 Iterative methods 58
5.3 The multigrid V-cycle algorithm 61
5.4 The finite element multigrid V-cycle algorithm 67
5.5 The full multigrid and work estimate 68
5.6 The adaptive multigrid method 69
5.7 Exercises 70
Chapter 6 Mixed Finite Element Methods 71
6.1 Abstract framework 71
6.2 The Poisson equation as a mixed problem 76
6.3 The Stokes problem 80
6.4 Exercises 83
Chapter 7 Finite Element Methods for Parabolic Problems 84
7.1 The weak solutions of parabolic equations 84
7.2 The semidiscrete approximation 88
7.3 The fully discrete approximation 92
7.4 A posteriori error analysis 96
7.5 The adaptive algorithm 102
7.6 Exercises 107
Chapter 8 Finite Element Methods for Maxwell Equations 108
8.1 The function space H(curl;Ω) 109
8.2 The curl conforming finite element approximation 116
8.3 Finite element methods for time harmonic Maxwell equations 121
8.4 A posteriori error analysis 124
8.5 Exercises 130
Chapter 9 Multiscale Finite Element Methods for Elliptic Equations 132
9.1 The homogenization result 132
9.2 The multiscale finite element method 136
9.2.1 Error estimate when h ε 138
9.3 The over-sampling multiscale finite element method 141
9.4 Exercises 147
Chapter 10 Implementations 148
10.1 A brief introduction to the MATLAB PDE Toolbox 148
10.1.1 A first example—Poisson equation on the unit disk 149
10.1.2 The mesh data structure 150
10.1.3 A quick reference 153
10.2 Codes for Example 4.1—L-shaped domain problem on uniform meshes 154
10.2.1 The main script 154
10.2.2 H1 error 155
10.2.3 Seven-point Gauss quadrature rule 155
10.3 Codes for Example 4.6|L-shaped domain problem on adaptive meshes 156
10.4 Implementation of the multigrid V-cycle algorithm 158
10.4.1 Matrix versions for the multigrid V-cycle algorithm and FMG 158
10.4.2 Code for FMG 159
10.4.3 Code for the multigrid V-cycle algorithm 160
10.4.4 The"newest vertex bisection"algorithm for mesh refinements 162
10.5 Exercises 168
Bibliography 170
参考文献 8
开源日期
2025-10-27
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.