Pattern Recognition & Matlab Intro: Pattern Recognition, Fourth Edition 🔍
Sergios Theodoridis; Aggelos Pikrakis; Konstantinos Koutroumbas; Dionisis Cavouras Elsevier/Academic Press, Matlab examples, 4, 2008
英语 [en] · PDF · 13.9MB · 2008 · 📘 非小说类图书 · 🚀/duxiu/lgli/lgrs/nexusstc/zlib · Save
描述
This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback.
· Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques
· Many more diagrams included--now in two color--to provide greater insight through visual presentation
· Matlab code of the most common methods are given at the end of each chapter.
· More Matlab code is available, together with an accompanying manual, via this site
· Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms.
· An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869).
Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.
备用文件名
lgli/_354314.e3e15fe2f3773d493677bf19c4416ea5.pdf
备用文件名
lgrsnf/_354314.e3e15fe2f3773d493677bf19c4416ea5.pdf
备用文件名
zlib/Computers/Computer Science/Sergios Theodoridis, Konstantinos Koutroumbas/Pattern Recognition & Matlab Intro: Pattern Recognition, Fourth Edition_1072350.pdf
备选标题
Pattern recognition : and, Introduction to pattern recognition : a MATLAB approach
备选标题
Pattern Recognition [With Introduction to Pattern Recognition] - 4th Edition
备选标题
Matlab Introduction to Pattern Recognition
备选标题
Pattern recognition ; MATLAB introduction
备选标题
Pattern recognition = Mo shi shi bie
备选标题
模式识别 英文版 第4版
备选作者
Theodoridis, Sergios, Pikrakis, Aggelos, Koutroumbas, Konstantinos, Cavouras, Dionisis
备选作者
(希)Sergios Theodoridis, (希)Konstantinos Koutroumbas著; Eodoridis Th; Utroumbas Ko
备选作者
Konstantinos Koutroumbas, Sergios Theodoridis, Sergios Theodoridis
备选作者
Sergios Theodoridis; Konstantinos Koutroumbas; TotalBoox,; TBX
备选作者
Koutroumbas, Konstantinos, Theodoridis, Sergios
备选作者
Sergios Theodoridis ... [et al.]
备选作者
(希)西奥多里德斯等著
备用出版商
Elsevier Science & Technology Books
备用出版商
Academic Press, Incorporated
备用出版商
Elsevier (Singapore) Pte Ltd
备用出版商
Morgan Kaufmann Publishers
备用出版商
Woodhead Publishing Ltd
备用出版商
China Machine Press
备用出版商
Syngress Publishing
备用出版商
John Murray Press
备用出版商
Focal Press
备用出版商
Brooks/Cole
备用出版商
MyiLibrary
备用出版商
机械工业出版社
备用版本
Jing dian yuan ban shu ku, 4th ed., English photoprint ed, Beijing, China, 2009
备用版本
Jing dian yuan ban shu ku, Ying yin ban, Beijing, 2009
备用版本
4th ed., Amsterdam, London, Massachusetts, 2009
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
United States, United States of America
备用版本
4th ed, Burlington, MA ; London, ©2009
备用版本
Elsevier Ltd., Burlington, MA, 2009
备用版本
Elsevier Ltd., Burlington, MA, 2010
备用版本
Burlington, MA, Massachusetts, 2010
备用版本
China, People's Republic, China
备用版本
Fourth Edition, PT, 2008
备用版本
New ed, London, 2009
备用版本
Singapore, Singapore
备用版本
Amsterdam, ©2010
备用版本
London, ©2010
备用版本
1, PS, 2010
元数据中的注释
до 2011-08
元数据中的注释
lg633204
元数据中的注释
{"edition":"4","isbns":["0080949126","0123744911","1282541153","1597492728","7111268962","9780080949123","9780123744913","9781282541153","9781597492720","9787111268963","9789812723376","9812723374"],"last_page":967,"publisher":"Academic Press","series":"Matlab examples"}
元数据中的注释
"Compliment of the book Pattern recognition, 4th edition, by S. Theodoridis and K. Koutroumbas, Academic Press, 2009."
Includes bibliographical references and index.
元数据中的注释
Previous ed.: Amsterdam: Academic, 2003.
Includes bibliographical references and index.
元数据中的注释
MiU
备用描述
Scope And Approach......Page 12
Supplements To The Text......Page 13
Acknowledgments......Page 14
1.1 Is Pattern Recognition Important?......Page 15
1.2 Features, Feature Vectors, And Classifiers......Page 18
1.3 Supervised, Unsupervised, And Semi-supervised Learning......Page 21
1.4 Matlab Programs......Page 23
1.5 Outline Of The Book......Page 24
2.2 Bayes Decision Theory......Page 27
2.3 Discriminant Functions And Decision Surfaces......Page 33
2.4.1 The Gaussian Probability Density Function......Page 34
2.4.2 The Bayesian Classifier For Normally Distributed Classes......Page 38
2.5.1 Maximum Likelihood Parameter Estimation......Page 48
2.5.2 Maximum A Posteriori Probability Estimation......Page 52
2.5.3 Bayesian Inference......Page 53
2.5.4 Maximum Entropy Estimation......Page 57
2.5.5 Mixture Models......Page 58
2.5.6 Nonparametric Estimation......Page 63
2.5.7 The Naive-bayes Classifier......Page 73
2.6 The Nearest Neighbor Rule......Page 75
2.7 Bayesian Networks......Page 78
2.8 Problems......Page 85
Matlab Programs And Exercises......Page 93
References......Page 100
3.2 Linear Discriminant Functions And Decision Hyperplanes......Page 104
3.3 The Perceptron Algorithm......Page 106
3.4.1 Mean Square Error Estimation......Page 116
3.4.2 Stochastic Approximation And The Lms Algorithm......Page 118
3.4.3 Sum Of Error Squares Estimation......Page 121
3.5.1 Mean Square Error Regression......Page 123
3.5.2 Mse Estimates Posterior Class Probabilities......Page 125
3.5.3 The Bias–variance Dilemma......Page 127
3.6 Logistic Discrimination......Page 130
3.7.1 Separable Classes......Page 132
3.7.2 Nonseparable Classes......Page 137
3.7.3 The Multiclass Case......Page 140
3.7.4 -svm......Page 146
3.7.5 Support Vector Machines: A Geometric Viewpoint......Page 149
3.7.6 Reduced Convex Hulls......Page 151
3.8 Problems......Page 155
Matlab Programs And Exercises......Page 157
References......Page 160
4.2 The Xor Problem......Page 164
4.3 The Two-layer Perceptron......Page 166
4.3.1 Classification Capabilities Of The Two-layer Perceptron......Page 169
4.4 Three-layer Perceptrons......Page 171
4.5 Algorithms Based On Exact Classification Of The Training Set......Page 173
4.6 The Backpropagation Algorithm......Page 175
4.7 Variations On The Backpropagation Theme......Page 182
4.8 The Cost Function Choice......Page 185
4.9 Choice Of The Network Size......Page 189
4.10 A Simulation Example......Page 194
4.11 Networks With Weight Sharing......Page 196
4.12 Generalized Linear Classifiers......Page 198
4.13 Capacity Of The L-dimensional Space In Linear Dichotomies......Page 200
4.14 Polynomial Classifiers......Page 202
4.15 Radial Basis Function Networks......Page 203
4.16 Universal Approximators......Page 207
4.17 Probabilistic Neural Networks......Page 209
4.18 Support Vector Machines: The Nonlinear Case......Page 211
4.19 Beyond The Svm Paradigm......Page 216
4.19.1 Expansion In Kernel Functions And Model Sparsi.cation......Page 218
4.19.2 Robust Statistics Regression......Page 224
4.20 Decision Trees......Page 228
4.20.2 Splitting Criterion......Page 231
4.20.4 Class Assignment Rule......Page 232
4.21 Combining Classifiers......Page 235
4.21.1 Geometric Average Rule......Page 236
4.21.2 Arithmetic Average Rule......Page 237
4.21.3 Majority Voting Rule......Page 238
4.21.4 A Bayesian Viewpoint......Page 240
4.22 The Boosting Approach To Combine Classifiers......Page 243
4.23 The Class Imbalance Problem......Page 250
4.24 Discussion......Page 252
4.25 Problems......Page 253
Matlab Programs And Exercises......Page 257
References......Page 262
5.1 Introduction......Page 274
5.2.1 Outlier Removal......Page 275
5.2.3 Missing Data......Page 276
5.3 The Peaking Phenomenon......Page 278
5.4.1 Hypothesis Testing Basics......Page 281
5.4.2 Application Of The T -test In Feature Selection......Page 286
5.5 The Receiver Operating Characteristics (roc) Curve......Page 288
5.6.1 Divergence......Page 289
5.6.2 Chernoff Bound And Bhattacharyya Distance......Page 291
5.6.3 Scatter Matrices......Page 293
5.7.1 Scalar Feature Selection......Page 296
5.7.2 Feature Vector Selection......Page 297
5.8 Optimal Feature Generation......Page 301
5.9 Neural Networks And Feature Generation/selection......Page 311
5.10 A Hint On Generalization Theory......Page 312
5.11 The Bayesian Information Criterion......Page 322
5.12 Problems......Page 324
Matlab Programs And Exercises......Page 327
References......Page 331
6.1 Introduction......Page 336
6.2 Basis Vectors And Images......Page 337
6.3 The Karhunen–loève Transform......Page 339
6.4 The Singular Value Decomposition......Page 348
6.5 Independent Component Analysis......Page 355
6.5.1 Ica Based On Secondand Fourth-order Cumulants......Page 357
6.5.2 Ica Based On Mutual Information......Page 358
6.5.3 An Ica Simulation Example......Page 361
6.6 Nonnegative Matrix Factorization......Page 362
6.7 Nonlinear Dimensionality Reduction......Page 363
6.7.1 Kernel PCA......Page 364
6.7.2 Graph-based Methods......Page 366
6.8 The Discrete Fourier Transform (dft)......Page 376
6.8.1 One-dimensional Dft......Page 377
6.9 The Discrete Cosine And Sine Transforms......Page 379
6.10 The Hadamard Transform......Page 381
6.11 The Haar Transform......Page 382
6.12 The Haar Expansion Revisited......Page 384
6.13 Discrete Time Wavelet Transform (dtwt)......Page 388
6.14 The Multiresolution Interpretation......Page 397
6.15 Wavelet Packets......Page 400
6.16 A Look At Two-dimensional Generalizations......Page 401
6.17 Applications......Page 403
6.18 Problems......Page 409
Matlab Programs And Exercises......Page 412
References......Page 415
7.1 Introduction......Page 423
7.2.1 Features For Texture Characterization......Page 424
7.2.2 Local Linear Transforms For Texture Feature Extraction......Page 433
7.2.3 Moments......Page 435
7.2.4 Parametric Models......Page 439
7.3 Features For Shape And Size Characterization......Page 447
7.3.1 Fourier Features......Page 448
7.3.2 Chain Codes......Page 451
7.3.3 Moment-based Features......Page 453
7.3.4 Geometric Features......Page 454
7.4.1 Self-similarity And Fractal Dimension......Page 456
7.4.2 Fractional Brownian Motion......Page 458
7.5 Typical Features For Speech And Audio Classification......Page 463
7.5.1 Short Time Processing Of Signals......Page 464
7.5.2 Cepstrum......Page 467
7.5.3 The Mel-cepstrum......Page 469
7.5.4 Spectral Features......Page 472
7.5.5 Time Domain Features......Page 474
7.5.6 An Example......Page 475
7.6 Problems......Page 478
Matlab Programs And Exercises......Page 482
References......Page 485
8.1 Introduction......Page 492
8.2 Measures Based On Optimal Path Searching Techniques......Page 493
8.2.1 Bellman’s Optimality Principle And Dynamic Programming......Page 495
8.2.2 The Edit Distance......Page 498
8.2.3 Dynamic Time Warping In Speech Recognition......Page 502
8.3 Measures Based On Correlations......Page 509
8.4 Deformable Template Models......Page 515
8.5 Content-based Information Retrieval: Relevance Feedback......Page 519
8.6 Problems......Page 524
Matlab Programs And Exercises......Page 525
References......Page 528
9.2 The Bayes Classifier......Page 531
9.3 Markov Chain Models......Page 532
9.4 The Viterbi Algorithm......Page 533
9.5 Channel Equalization......Page 537
9.6 Hidden Markov Models......Page 542
9.7 Hmm With State Duration Modeling......Page 555
9.8 Training Markov Models Via Neural Networks......Page 562
9.9 A Discussion Of Markov Random Fields......Page 564
9.10 Problems......Page 566
Matlab Programs And Exercises......Page 567
References......Page 570
10.1 Introduction......Page 576
10.2 Error-counting Approach......Page 577
10.3 Exploiting The Finite Size Of The Data Set......Page 578
10.4 A Case Study From Medical Imaging......Page 582
10.5 Semi-supervised Learning......Page 586
10.5.1 Generative Models......Page 588
10.5.2 Graph-based Methods......Page 591
10.5.3 Transductive Support Vector Machines......Page 595
10.6 Problems......Page 599
References......Page 600
11.1 Introduction......Page 604
11.1.1 Applications Of Cluster Analysis......Page 607
11.1.2 Types Of Features......Page 608
11.1.3 Definitions Of Clustering......Page 609
11.2.1 Definitions......Page 611
11.2.2 Proximity Measures Between Two Points......Page 613
11.2.3 Proximity Functions Between A Point And A Set......Page 625
11.2.4 Proximity Functions Between Two Sets......Page 629
11.3 Problems......Page 631
References......Page 633
12.1.1 Number Of Possible Clusterings......Page 635
12.2 Categories Of Clustering Algorithms......Page 637
12.3 Sequential Clustering Algorithms......Page 641
12.3.1 Estimation Of The Number Of Clusters......Page 643
12.4 A Modification Of Bsas......Page 645
12.5 A Two-threshold Sequential Scheme......Page 646
12.6 Refinement Stages......Page 649
12.7.1 Description Of The Architecture......Page 651
12.7.2 Implementation Of The Bsas Algorithm......Page 652
12.8 Problems
备用描述
Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas'Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition Solved examples in Matlab, including real-life data sets in imaging and audio recognition Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)
备用描述
Introduction to Pattern A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision.
备用描述
An accompanying manual to Theodoridis/Koutroumbas, Pattern Recognition, that includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition.<br><br>*Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition 4e.<br>*Solved examples in Matlab, including real-life data sets in imaging and audio recognition<br>*Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)
备用描述
"This book considers classical and current theory and practice of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition including semi-supervised learning, non-linear dimensionality reduction techniques and spectral clustering."--Jacket
备用描述
This is an accompanying manual to "Theodoridis/Koutroumbas, Pattern Recognition", that includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. It also includes Matlab code and descriptive summary of the most common methods and algorithms in "Theodoridis/Koutroumbas, Pattern Recognition 4e"
开源日期
2011-08-31
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。