Generalized Multivariate Analysis 🔍
Fang Kai-Tai, Zhang Yao-Ting Springer-verlag / Science Press, Beijing, Berlin, New York, China (Republic : 1949- ), 1990
英语 [en] · DJVU · 3.0MB · 1990 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
The theory of generalized multivariate analysis, based on elliptically contoured distributions, represents a brilliant achievement in the field of multivariate analysis. This is the first book on the subject. The text discusses estimation of parameters, testing of hypotheses, and linear models employing the method of stochastic representation, rather than following the classical treatments. It is designed as a textbook for a one-semester course at postgraduate level and as a reference source for lecturers and researchers.
备用文件名
lgli/fang zhang=generalized multivariate analysis.djvu
备用文件名
lgrsnf/fang zhang=generalized multivariate analysis.djvu
备用文件名
zlib/no-category/Fang Kai-Tai, Zhang YaoTing/Generalized Multivariate Analysis_21149699.djvu
备选作者
Kai-tai Fang, Yao-ting Zhang
备选作者
K. T. Fang, Y. T. Zhang
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
Beijing : Science Press ; C1990.
备用出版商
Science Press ; Springer-Verlag
备用出版商
Copernicus
备用出版商
Telos
备用版本
United States, United States of America
备用版本
China, People's Republic, China
备用版本
Germany, Germany
备用版本
1, 1990/10/01
备用版本
December 1990
备用版本
Nov 16, 1990
元数据中的注释
{"isbns":["0387176519","3540176519","7030002342","9780387176512","9783540176510","9787030002341"],"publisher":"Springer"}
元数据中的注释
Includes bibliographical references (p. [212]-216) and index.
备用描述
Cover
Title page
Preface
CHAPTER I SOME MATRIX THEORY AND INVARIANCE
1.1. Definitions
1.1.1. Matrices
1.1.2. Determinants
1.1.3. Inverse of a Matrix
1.1.4. Partition of Matrices
1.1.5. Rank of a Matrix
1.1.6. Trace of a Matrix
1.1.7. Characteristic Roots and Characteristic Vectors
1.1.8. Positive Definite Matrices
1.1.9. Projection Matrices
1.2. Some Matrix Factorizations
1.3. Generalized Inverse of Matrix
1.4. "vec” Operator and Kronecker Products
1.4.1. "vec” Operator
1.4.2. Kronecker Products
1.4.3. Permutation Matrix
1.5. Derivatives of Matrices and the Matrix Differential
1.5.1. The Derivatives of Matrices with Respect to a Scalar
1.5.2. The Derivative of Scalar Functions of a Matrix with Respect to the Matrix
1.5.3. The Derivatives of Vectors
1.5.4. The Matrix Differential
1.6. Evaluation of the Jacobians of Some Transformations
1.7. Groups and Invariance
References
Exercises 1
CHAPTER II ELLIPTICALLY CONTOURED DISTRIBUTIONS
2.1. Multivariate Distributions
2.1.1. Multivariate Cumulative Distribution Function
2.1.2. Density
2.1.3. Marginal Distributions
2.1.4. Conditional Distributions
2.1.5. Independence
2.1.6. Characteristic Functions
2.1.7. The Operation
2.2. Moments of Multivariate Distributions
2.3. Multivariate Normal Distribution
2.4. Dirichlet Distribution
2.5. Spherical Distributions
2.5.1. Uniform Distribution and Its Stochastic Representation
2.5.2. Densities
2.5.3. The Class Phi_∞
2.5.4. Invariant Distribution
2.6. Elliptically Contoured Distributions
2.6.1. The Stochastic Representation
2.6.2. Combination and Marginal Distributions
2.6.3. Moments
2.6.4. Conditional Distributions
2.6.5. Densities
2.7. Characterizations of Normality
2.8. Distributions of Quadratic Forms and Cochran’s Theorems
2.8.1. Distributions of Quadratic Forms
2.8.2. Cochran’s Theorem for the Normal Case
2.8.3. Cochran’s Theorem for the Case of ECD
2.9. Some Non-Central Distributions
2.9.1. Generalized Non-Central χ2—Distribution
2.9.2. Generalized Non-Central t—Distribution
2.9.3. Generalized Non-Central F—Distribution
References
Exercises 2
CHAPTER III SPHERICAL MATRIX DISTRIBUTIONS
3.1. Introduction
3.1.1. Left—Spherical Distributions
3.1.2. Spherical distributions
3.1.3. Multivariate Spherical Distributions
3.1.4. Vector—Spherical Distributions
3.2. Relationships among Classes of Spherical Matrix Distributions .97
3.2.1. Inclusion Relation
3.2.2. Classes of Marginal Distributions
3.2.3. Coordinate Systems
3.2.4. Densities
3.3. Elliptically Contoured Matrix Distributions
3.4. Distributions of Quadratic Forms
3.4.1. Densities of W
3.4.2. A Multivariate Analogue to Cochran’s Theorem
3.5. Some Related Distributions with Spherical Matrix Distributions
3.5.1. The Matrix Variate Beta Distributions
3.5.2. The Matrix Variate Dirichlet Distributions
3.5.3. The Matrix Variate t—Distributions
3.5.4. The Matrix Variate F—Distributions
3.5.5. Some Inverted Matrix Variate Distributions
3.5.6. Some Distributions of the Characteristic Roots of Matrix Variate
3.6. The Generalized Bartlett Decomposition and the Spectral Decomposition of Spherical Matrix Distributions
3.6.1. Coordinate Transformations
3.6.2. The Generalized Bartlett Decomposition
3.6.3. The Spectral Decomposition
References
Exercises 3
CHAPTER IV ESTIMATION OF PARAMETERS
4.1. MLE’s of Mean Vector and Covariance Matrix
4.1.1. MLE’s of μ and Σ in VS_{x p}(μ,Σ,f)
4.1.2. Examples
4.1.3. MLE’s of μ and Σ in LS_{x p}(μ,Σ,f) and SS_{x p}(μ,Σ,f)
4.1.4. MLE’s of Parametric Functions
4.2. The Distributions of Some Estimators
4.2.1. Joint Density
4.2.2. Marginal Density
4.2.3. Independence of μ^{_} and S
4.2.4. Distribution of Sample Correlation Coefficients
4.3. Properties of ^μ and ^Σ
4.3.1. Unbiasedness
4.3.2. Sufficiency
4.3.3. Completeness
4.3.4. Consistency
4.4. Minimax and Admissible Characters of ^μ and Σ
4.4.1. Inadmissibffity of x^{_} as an Estimate of μ
4.4.2. Discussion on Estimation of
4.4.3. Minimax Estimates of t
References
Exercises 4
CHAPTER V TESTING HYPOTHESES
5.1. Distrbution-Free Statistics
5.2. Testing Hypotheses About Mean Vectors
5.2.1. Likelihood Ratio Criteria
5.2.2. Testing that a Mean Vector Equals a Specffied Vector
5.2.3. The Distribution of T2
5.2.4. T2-Testing and Invariance of Tests
5.2.5. Testing Equality of Several Means with Equal and Unknown Covariance Matrices
5.3. Tests for Covariance Matrices
5.3.1. The Spherical Test
5.3.2. Equality of Several Covariance Matrices
5.3.3. Simultaneously Testing Equality of Several Means and Covariance matrices
5.3.4. Testing Lack of Correlation Between Sets of Variates
5.4. A Note on Likelihood Ratio Method
5.5. Robust Tests with Invariance
5.5.1. Robust Tests for Spherical Symmetry
5.5.2. A Multivariate Test
5.6 Goodness of Fit Test for Elliptical Symmetry
5.6.1. A Characteristic of Spherical Symmetry
5.6.2. Significance Tests for Spherical Symmetry (I)
5.6.3. Signfficance Tests for Spherical Symmetry (II)
5.6.4. Significance Tests for Elliptical Symmetry
References
Exercises 5
CHAPTER VI LINEAR MODELS
6.1. Definition and Examples
6.1.1. Definition
6.1.2. Regression Model
6.1.3. Variance Analysis Model
6.1.4. Discriminant Analysis
6.2. BLUE
6.2.1. Least Squares Estimates
6.2.2. BLUE
6.2.3. Regularity
6.2.4. Variation of Models
6.3. Variance Components
6.3.1. Least Squares Method
6.3.2. Invariant QUE (IQUE)
6.3.3. MINQUE
6.4. Hypothesis Testing
6.4.1. Linear Hypothesis
6.4.2. Canonical Form
6.4.3. Pre-test Estimates and James—Stein Estimates
6.5. Applications
6.5.1. Double Screening Stepwise Regression (DSSR Method)
6.5.2. Example
6.5.3. Discriminant Analysis and Regression
References
Exercises 6
REFERENCES
INDEX
备用描述
A study of multivariate analysis, discussing estimation of parameters, testing of hypotheses, and linear models employing the method of stochastic representation. This book is designed as a textbook for postgraduates and as a reference source for lecturers and researchers.
开源日期
2022-03-27
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。