Small Scale Modeling and Simulation of Incompressible Turbulent Multi-Phase Flow (CISM International Centre for Mechanical Sciences, 607) 🔍
Stéphane Vincent, Jean-Luc Estivalèzes, Ruben Scardovelli
Springer International Publishing AG, Springer Nature, Cham, 2022
英语 [en] · PDF · 8.5MB · 2022 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
The book provides basic and recent research insights concerning the small scale modeling and simulation of turbulent multi-phase flows. By small scale, it has to be understood that the grid size for the simulation is smaller than most of the physical time and space scales of the problem. Small scale modeling of multi-phase flows is a very popular topic since the capabilities of massively parallel computers allows to go deeper into the comprehension and characterization of realistic flow configurations and at the same time, many environmental and industrial applications are concerned such as nuclear industry, material processing, chemical reactors, engine design, ocean dynamics, pollution and erosion in rivers or on beaches. The work proposes a complete and exhaustive presentation of models and numerical methods devoted to small scale simulation of incompressible turbulent multi-phase flows from specialists of the research community. Attention has also been paid to promote illustrations and applications, multi-phase flows and collaborations with industry. The idea is also to bring together developers and users of different numerical approaches and codes to share their experience in the development and validation of the algorithms and discuss the difficulties and limitations of the different methods and their pros and cons. The focus will be mainly on fixed-grid methods, however adaptive grids will be also partly broached, with the aim to compare and validate the different approaches and models.
备用文件名
lgrsnf/2261.pdf
备用出版商
Springer Nature Switzerland AG
备用版本
CISM International Centre for Mechanical Sciences, Cham, 2022
备用版本
Switzerland, Switzerland
备用描述
Acknowledgements
Collaborators
Technical Aspects
Financial Support
Contents
1 Introduction and Motivations
1.1 Governing Equations for DNS of Multiphase Flows
1.1.1 Mass Conservation
1.1.2 Momentum Conservation
1.1.3 Fluid Assumptions
1.2 Interface and Jump Conditions
1.2.1 Surface Tension
1.2.2 Viscosity
1.3 The Final Model
2 DNS of Resolved Scale Interfacial and Free Surface Flows with Fictitious Domains
2.1 One-Fluid Model
2.2 General Discretization and Solvers
2.2.1 Pressure-Velocity Coupling and Solvers
2.2.2 Jump Conditions
2.2.3 Boundary Conditions
2.2.4 Poisson Pressure Solver
2.3 Methods for Handling Interfaces
2.3.1 Interface Tracking Methods
2.3.2 Front-Capturing (Implicit Interface)
2.3.3 SPH Methods
2.4 Capillary Effects and Jump Conditions at Interface
2.4.1 Ghost Fluid
2.4.2 Continuum Surface Force
2.5 Validations of Interface Tracking and Fictitious Domains
2.5.1 Comparison of Interface Tracking Methods
2.5.2 Density and Viscosity Averages
2.5.3 Capillary Forces
3 Interface Tracking
3.1 VOF
3.1.1 Introduction to VOF Methods
3.1.2 Initialization of the Color Function C
3.1.3 A Library to Initialize the Volume Fraction Field
3.1.4 Algebraic Methods for the Advection of the Color Function
3.1.5 Simple Geometric Methods for the Advection of the Color Function
3.1.6 VOF-PLIC Methods: Interface Reconstruction
3.1.7 VOF-PLIC Methods: Interface Advection
3.2 Level Set
3.2.1 Level Set Definition
3.2.2 Numerical Method
3.2.3 Coupled Level-Set Volume of Fluid
3.2.4 Advection of the Level-Set Function and the Volume Fraction
3.3 Front Tracking
4 Adaptive Mesh Refinement
4.1 Introduction
4.2 AMR
4.3 Poisson Solver
4.4 Numerical Results
5 Numerical Treatment of Constraints with Fictitious Domains
5.1 Augmented Lagrangian Methods
5.2 Penalty Methods
5.3 Remarks on Time Splitting Approaches
5.4 Validation of Penalty Techniques
6 Compressible (Low-Mach) Two-Phase Flows
6.1 Mass Conservation
6.2 Momentum Conservation
6.3 Energy Conservation
6.4 Comparison with Classical ``Low Mach Number'' Model
6.5 Synthesis of Models
6.6 Validation of Isothermal Compressible One-Fluid Model
7 Large Eddy Simulation of Resolved Scale Interfacial Flows
7.1 Filtering 1-Fluid Navier-Stokes Equations—Continuous Media Framework
7.2 Filtering Discrete Mechanics Equations
7.3 Structural LES and Approximate Deconvolution Models (ADM)
7.4 LES of Multiphase Flows
8 DNS of Particulate Flows
8.1 Fictitious Domain and Penalty Approaches
8.1.1 Physical Characteristics of the Equivalent Fluid
8.1.2 Eulerian-Lagrangian VOF Method for Particle Tracking
8.1.3 Numerical Modeling of Particle Interaction
8.1.4 Parallel Implementation
8.1.5 Sum up of the Implemented Eulerian-Lagrangian Algorithm
8.2 Validations
8.2.1 Monodispersed Arrangements of Spheres
8.2.2 Bidisperse Arrangements of Spheres
8.2.3 Fluidized Beds
8.2.4 Interaction Between Particles and Turbulence
9 Multiscale Euler–Lagrange Coupling
9.1 Introduction
9.2 Governing Equations
9.3 Resolved Liquid Structures—Eulerian Modelling
9.3.1 Interface Tracking
9.3.2 Temporal Integration
9.3.3 Adaptive Mesh Refinement
9.4 Multi-scale Approach
9.4.1 Treatment of Medium Structures
9.4.2 Small Droplets
9.5 Results and Validation
9.5.1 Drop in a Uniform Flow
9.5.2 Drop-Free Surface Collision
9.5.3 Assisted Atomization of a Liquid Sheet
10 Applications and Perspectives
Appendix Bibliography
Collaborators
Technical Aspects
Financial Support
Contents
1 Introduction and Motivations
1.1 Governing Equations for DNS of Multiphase Flows
1.1.1 Mass Conservation
1.1.2 Momentum Conservation
1.1.3 Fluid Assumptions
1.2 Interface and Jump Conditions
1.2.1 Surface Tension
1.2.2 Viscosity
1.3 The Final Model
2 DNS of Resolved Scale Interfacial and Free Surface Flows with Fictitious Domains
2.1 One-Fluid Model
2.2 General Discretization and Solvers
2.2.1 Pressure-Velocity Coupling and Solvers
2.2.2 Jump Conditions
2.2.3 Boundary Conditions
2.2.4 Poisson Pressure Solver
2.3 Methods for Handling Interfaces
2.3.1 Interface Tracking Methods
2.3.2 Front-Capturing (Implicit Interface)
2.3.3 SPH Methods
2.4 Capillary Effects and Jump Conditions at Interface
2.4.1 Ghost Fluid
2.4.2 Continuum Surface Force
2.5 Validations of Interface Tracking and Fictitious Domains
2.5.1 Comparison of Interface Tracking Methods
2.5.2 Density and Viscosity Averages
2.5.3 Capillary Forces
3 Interface Tracking
3.1 VOF
3.1.1 Introduction to VOF Methods
3.1.2 Initialization of the Color Function C
3.1.3 A Library to Initialize the Volume Fraction Field
3.1.4 Algebraic Methods for the Advection of the Color Function
3.1.5 Simple Geometric Methods for the Advection of the Color Function
3.1.6 VOF-PLIC Methods: Interface Reconstruction
3.1.7 VOF-PLIC Methods: Interface Advection
3.2 Level Set
3.2.1 Level Set Definition
3.2.2 Numerical Method
3.2.3 Coupled Level-Set Volume of Fluid
3.2.4 Advection of the Level-Set Function and the Volume Fraction
3.3 Front Tracking
4 Adaptive Mesh Refinement
4.1 Introduction
4.2 AMR
4.3 Poisson Solver
4.4 Numerical Results
5 Numerical Treatment of Constraints with Fictitious Domains
5.1 Augmented Lagrangian Methods
5.2 Penalty Methods
5.3 Remarks on Time Splitting Approaches
5.4 Validation of Penalty Techniques
6 Compressible (Low-Mach) Two-Phase Flows
6.1 Mass Conservation
6.2 Momentum Conservation
6.3 Energy Conservation
6.4 Comparison with Classical ``Low Mach Number'' Model
6.5 Synthesis of Models
6.6 Validation of Isothermal Compressible One-Fluid Model
7 Large Eddy Simulation of Resolved Scale Interfacial Flows
7.1 Filtering 1-Fluid Navier-Stokes Equations—Continuous Media Framework
7.2 Filtering Discrete Mechanics Equations
7.3 Structural LES and Approximate Deconvolution Models (ADM)
7.4 LES of Multiphase Flows
8 DNS of Particulate Flows
8.1 Fictitious Domain and Penalty Approaches
8.1.1 Physical Characteristics of the Equivalent Fluid
8.1.2 Eulerian-Lagrangian VOF Method for Particle Tracking
8.1.3 Numerical Modeling of Particle Interaction
8.1.4 Parallel Implementation
8.1.5 Sum up of the Implemented Eulerian-Lagrangian Algorithm
8.2 Validations
8.2.1 Monodispersed Arrangements of Spheres
8.2.2 Bidisperse Arrangements of Spheres
8.2.3 Fluidized Beds
8.2.4 Interaction Between Particles and Turbulence
9 Multiscale Euler–Lagrange Coupling
9.1 Introduction
9.2 Governing Equations
9.3 Resolved Liquid Structures—Eulerian Modelling
9.3.1 Interface Tracking
9.3.2 Temporal Integration
9.3.3 Adaptive Mesh Refinement
9.4 Multi-scale Approach
9.4.1 Treatment of Medium Structures
9.4.2 Small Droplets
9.5 Results and Validation
9.5.1 Drop in a Uniform Flow
9.5.2 Drop-Free Surface Collision
9.5.3 Assisted Atomization of a Liquid Sheet
10 Applications and Perspectives
Appendix Bibliography
备用描述
CISM International Centre for Mechanical Sciences
Erscheinungsdatum: 07.10.2022
Erscheinungsdatum: 07.10.2022
开源日期
2024-04-22
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.