Multiple Imputation in Practice : With Examples Using IVEware 🔍
Trivellore Raghunathan, Patricia A. Berglund, Peter W. Solenberger CRC Press, Taylor & Francis Group, CRC Press (Unlimited), Boca Raton, 2018
英语 [en] · PDF · 1.5MB · 2018 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
Multiple Imputation in Practice: With Examples Using IVEware provides practical guidance on multiple imputation analysis, from simple to complex problems using real and simulated data sets. Data sets from cross-sectional, retrospective, prospective and longitudinal studies, randomized clinical trials, complex sample surveys are used to illustrate both simple, and complex analyses. Version 0.3 of IVEware, the software developed by the University of Michigan, is used to illustrate analyses. IVEware can multiply impute missing values, analyze multiply imputed data sets, incorporate complex sample design features, and be used for other statistical analyses framed as missing data problems. IVEware can be used under Windows, Linux, and Mac, and with software packages like SAS, SPSS, Stata, and R, or as a stand-alone tool. This book will be helpful to researchers looking for guidance on the use of multiple imputation to address missing data problems, along with examples of correct analysis techniques.-- Provided by Publisher
备用文件名
lgli/CRC - Multiple Imputation in Practice with Examples using IVEware 2018.pdf
备用文件名
lgrsnf/CRC - Multiple Imputation in Practice with Examples using IVEware 2018.pdf
备用文件名
zlib/Mathematics/Trivellore Raghunathan, Patricia A. Berglund, Peter W. Solenberger/Multiple Imputation in Practice with Examples using IVEware_3588706.pdf
备选作者
Raghunathan, Trivellore, Berglund, Patricia A., Solenberger, Peter W.
备选作者
Trivellore Raghunathan, Peter W. Solenberger, Patricia A. Berglund
备用出版商
Chapman and Hall/CRC
备用出版商
CRC Press LLC
备用版本
United States, United States of America
备用版本
Boca Raton, Florida, 2018
备用版本
1, 2018
元数据中的注释
0
元数据中的注释
lg2261479
元数据中的注释
{"isbns":["1498770169","9781498770163"],"last_page":255,"publisher":"CRC Press"}
备用描述
Contents......Page 3
Preface......Page 8
De nition of a Missing Value......Page 12
Patterns of Missing Data......Page 13
Missing Data Mechanisms......Page 14
What is Imputation?......Page 16
General Framework for Imputation......Page 20
Sequential Regression Multivariate Imputation (SRMI)......Page 21
How Many Iterations?......Page 23
A Technical Issue......Page 24
Three-variable Example......Page 25
Complex Sample Surveys......Page 30
Imputation Diagnostics......Page 31
Should We Impute or Not?......Page 33
Is Imputation Making Up Data?......Page 34
Multiple Imputation Analysis......Page 35
Multiple Imputation Theory......Page 37
Number of Imputations......Page 40
Additional Reading......Page 41
Introduction......Page 44
Imputation Task......Page 46
Descriptive Analysis......Page 49
Practical Considerations......Page 52
Exercises......Page 53
Introduction......Page 56
Complete Data Inference......Page 57
Comparing Blocks of Variables......Page 59
Model Diagnostics......Page 60
Multiple Imputation Analysis......Page 61
Example......Page 63
Additional Reading......Page 69
Exercises......Page 70
Introduction......Page 73
Multiple Imputation Analysis......Page 74
Additional Reading......Page 83
Exercises......Page 84
Contingency Table Analysis......Page 88
Log-linear Models......Page 89
Three-way Contingency Table......Page 91
Two-way Contingency Table......Page 92
Three-way Contingency Table......Page 97
Additional Reading......Page 104
Exercises......Page 105
Introduction......Page 108
Multiple Imputation Analysis......Page 109
Additional Reading......Page 115
Exercises......Page 116
Introduction......Page 119
Example......Page 121
Multiple Imputation Analysis......Page 123
Exercises......Page 125
Introduction......Page 128
Example 1: Binary Outcome......Page 130
Example 2: Continuous Outcome......Page 133
Example 3: A Case Study......Page 138
Discussion......Page 151
Additional Reading......Page 152
Exercises......Page 153
Introduction......Page 156
Example......Page 158
Exercises......Page 168
Introduction......Page 170
Pattern-Mixture Model......Page 171
Examples......Page 173
Additional Reading......Page 183
Exercises......Page 184
Imputing Scores......Page 187
Imputation and Analysis Models......Page 188
Running Simulations Using......Page 190
Congeniality and Multiple Imputations......Page 195
Combining Bayesian Inferences......Page 198
Imputing Interactions......Page 204
Final Thoughts......Page 209
Additional Reading......Page 210
Exercises......Page 211
A.1 St. Louis Risk Research Project......Page 213
A.2 Primary Biliary Cirrhosis Data Set......Page 214
A.3 Opioid Detoxi cation Data Set......Page 217
A.5 National Comorbidity Survey Replication (NCS-R)......Page 218
A.6 National Health and Nutrition Examination Survey, -2012 (NHANES 2011-2012)......Page 220
A.7 Health and Retirement Study, 2012 (HRS 2012)......Page 225
A.8 Case Control Data for Omega-3 Fatty Acids and Primary Cardiac Arrest......Page 226
A.9 National Merit Twin Study......Page 229
A.11 Outline of Analysis Examples and Data Sets......Page 230
IVEware......Page 233
Biblio......Page 239
Index......Page 252
备用描述
This book provides practical guidance on multiple imputation analysis, from simple to complex problems using real and simulated data sets. Data sets from cross-sectional, retrospective, prospective and longitudinal studies, randomized clinical trials, complex sample surveys are used to illustrate both simple, and complex analyses.
开源日期
2018-09-05
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。