Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces, 1st Edition 🔍
Walter Benz, 1931- Birkhäuser Basel, 1, 2005
英语 [en] · PDF · 1.8MB · 2005 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension–free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2– and 3–dimensional real geometry.
备用文件名
lgrsnf/D:\!genesis\library.nu\d7\_48064.d7866938eb3dacb3419b418bed058a46.pdf
备用文件名
nexusstc/Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces/d7866938eb3dacb3419b418bed058a46.pdf
备用文件名
zlib/Science (General)/Walter Benz/Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces, 1st Edition_897468.pdf
备选作者
Benz, Walter
备用出版商
Birkhäuser ; Springer [distributor
备用出版商
Birkhäuser Verlag
备用出版商
Birkhäuser GmbH
备用出版商
Birkhauser
备用版本
Basel, GW, Boston, MA, United States, 2006
备用版本
Boston, Mass, Massachusetts, 2005
备用版本
Basel ; Boston, ©2005
备用版本
Basel, London, 2006
备用版本
Germany, Germany
备用版本
1, 2006
元数据中的注释
до 2011-01
元数据中的注释
lg472739
元数据中的注释
{"edition":"1","isbns":["3764373717","3764374322","9783764373719","9783764374327"],"last_page":251,"publisher":"Birkhäuser Basel"}
元数据中的注释
Includes bibliographical references and index.
备用描述
Contents......Page 5
Preface......Page 8
1.1 Real inner product spaces......Page 12
1.2 Examples......Page 13
1.3 Isomorphic, non-isomorphic spaces......Page 14
1.4 Inequality of Cauchy–Schwarz......Page 15
1.5 Orthogonal mappings......Page 16
1.6 A characterization of orthogonal mappings......Page 18
1.7 Translation groups, axis, kernel......Page 21
1.8 Separable translation groups......Page 25
1.9 Geometry of a group of permutations......Page 27
1.10 Euclidean, hyperbolic geometry......Page 31
1.11 A common characterization......Page 32
1.12 Other directions, a counterexample......Page 45
2.1 Metric spaces......Page 48
2.2 The lines of L.M. Blumenthal......Page 49
2.3 The lines of Karl Menger......Page 54
2.4 Another definition of lines......Page 56
2.5 Balls, hyperplanes, subspaces......Page 57
2.6 A special quasi-hyperplane......Page 61
2.7 Orthogonality, equidistant surfaces......Page 62
2.8 A parametric representation......Page 65
2.9 Ends, parallelity, measures of angles......Page 67
2.10 Angles of parallelism, horocycles......Page 72
2.11 Geometrical subspaces......Page 74
2.12 The Cayley–Klein model......Page 77
2.13 Hyperplanes under translations......Page 81
2.14 Lines under translations......Page 83
2.15 Hyperbolic coordinates......Page 85
2.16 All isometries of (X, eucl), (X, hyp)......Page 86
2.17 Isometries preserving a direction......Page 88
2.18 A characterization of translations......Page 89
2.19 Different representations of isometries......Page 90
2.20 A characterization of isometries......Page 91
2.21 A counterexample......Page 96
2.22 An extension problem......Page 97
2.23 A mapping which cannot be extended......Page 102
3.1 Möbius balls, inversions......Page 104
3.2 An application to integral equations......Page 107
3.3 A fundamental theorem......Page 109
3.4 Involutions......Page 113
3.5 Orthogonality......Page 118
3.6 Möbius circles, M[sub(N)]- and M[sup(N)]-spheres......Page 122
3.7 Stereographic projection......Page 131
3.8 Poincaré’s model of hyperbolic geometry......Page 134
3.9 Spears, Laguerre cycles, contact......Page 144
3.10 Separation, cyclographic projection......Page 150
3.11 Pencils and bundles......Page 155
3.12 Lie cycles, groups Lie (X), Lag (X)......Page 161
3.13 Lie cycle coordinates, Lie quadric......Page 165
3.14 Lorentz boosts......Page 170
3.15 M(X) as part of Lie (X)......Page 178
3.16 A characterization of Lag (X)......Page 181
3.17 Characterization of the Lorentz group......Page 183
3.18 Another fundamental theorem......Page 184
4.1 Two characterization theorems......Page 186
4.2 Causal automorphisms......Page 188
4.3 Relativistic addition......Page 192
4.4 Lightlike, timelike, spacelike lines......Page 195
4.5 Light cones, lightlike hyperplanes......Page 197
4.6 Characterization of some hyperplanes......Page 202
4.7 L(Z) as subgroup of Lie (X)......Page 204
4.8 A characterization of LM-distances......Page 205
4.9 Einstein’s cylindrical world......Page 208
4.10 Lines, null-lines, subspaces......Page 211
4.11 2-point invariants of (C(Z), MC(Z))......Page 213
4.13 2-point invariants of (Σ(Z), MΣ(Z))......Page 216
4.14 Elliptic and spherical distances......Page 219
4.15 Points......Page 221
4.16 Isometries......Page 223
4.17 Distance functions of X[sub(0)]......Page 226
4.18 Subspaces, balls......Page 228
4.19 Periodic lines......Page 229
4.20 Hyperbolic geometry revisited......Page 233
A Notations and symbols......Page 241
B Bibliography......Page 243
E......Page 248
M......Page 249
V......Page 250
Z......Page 251
备用描述
This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry.
备用描述
Presents the real inner product spaces of arbitrary (finite or infinite) dimension greater than or equal to 2. This book studies the sphere geometries of Mobius and Lie for these spaces, besides euclidean and hyperbolic geometry, as well as geometries where Lorentz transformations play the key role
备用描述
1. Translation Groups -- 2. Euclidean And Hyperbolic Geometry -- 3. Sphere Geometries Of Mobius And Lie -- 4. Lorentz Transformations. Walter Benz. Includes Bibliographical References (p. [233]-237) And Index.
备用描述
Preface -- Translation Groups -- Euclidean and Hyperbolic Geometry -- Sphere Geometries of Möbius and Lie -- Lorentz Transformations -- Bibliography -- Notation and Symbols -- Index.
开源日期
2011-06-04
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。