upload/wll/ENTER/Science/IT & AI/IT Library/239 Computer Science Springer Books/Herman Casier, Michiel Steyaert, Arthur H.M. van Roermund - Analog Circuit Design.pdf
Analog Circuit Design : Robust Design, Sigma Delta Converters, RFID 🔍
Roermund, Arthur H. M. van; Casier, Herman; Steyaert, Michiel
Springer Netherlands : Imprint: Springer, Springer Nature, Dordrecht, 2011
英语 [en] · PDF · 11.0MB · 2011 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
Analog Circuit Design contains the contribution of 18 tutorials of the 19th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of: Robust Design, chaired byHerman Casier, Consultant Sigma Delta Converters, chaired by Prof. Michiel Steyaert, Catholic University Leuven RFID, chaired byProf. Arthur van Roermund, Eindhoven University of Technology Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course.;pt. 1. Robust design -- pt. 2. Sigma delta converters -- pt. 3. RFID.
备用文件名
lgli/Z:\Bibliotik_\A Library\Computer Science\Computer Science Springer Books\Herman Casier, Michiel Steyaert, Arthur H.M. van Roermund - Analog Circuit Design.pdf
备用文件名
lgrsnf/Z:\Bibliotik_\A Library\Computer Science\Computer Science Springer Books\Herman Casier, Michiel Steyaert, Arthur H.M. van Roermund - Analog Circuit Design.pdf
备用文件名
nexusstc/Analog Circuit Design/cd92a555ffe6d219150d0a616415e06d.pdf
备用文件名
zlib/Engineering/Roermund, Arthur H. M. van; Casier, Herman; Steyaert, Michiel/Analog circuit design: robust design, sigma delta converters, RFID_11002249.pdf
备选作者
Herman Casier; Michiel Steyaert; Arthur H.M van Roermund; SpringerLink (Online service)
备选作者
edited by Herman Casier, Michiel Steyaert, Arthur H.M. van Roermund
备选作者
Casier, Herman; Steyaert, Michiel; Van Roermund, Arthur H.m.
备选作者
Herman Casier; Michiel Steyaert; Arthur H. M. van Roermund
备选作者
Arthur H. M. van Roermund; Michiel Steyaert; Herman Casier
备用出版商
Springer Science+Business Media B.V.
备用出版商
Springer Science + Business Media BV
备用版本
1st ed. 2011, Dordrecht, 2011
备用版本
Dordrecht, Netherlands, 2011
备用版本
Dordrecht ; New York, ©2011
备用版本
Netherlands, Netherlands
备用版本
Dordrecht, cop. 2011
备用版本
2011, 2011-02-09
元数据中的注释
lg2860476
元数据中的注释
producers:
springer_download.py
springer_download.py
元数据中的注释
{"isbns":["9400703902","9400703910","9789400703902","9789400703919"],"last_page":367,"publisher":"Springer"}
元数据中的注释
MiU
备用描述
2.2 The RFID Measurement Setup......Page 4
4.1 Roadmap for Organic Electronics......Page 7
4.2 Roadmap for Printed RFID......Page 9
Cover......Page 1
2.1 Technology......Page 2
2.1 General Rectifier Topologies......Page 3
Preface......Page 5
Contributors......Page 10
3.1 Organic RFID Transponder Chip with Dual-Gate Architecture......Page 13
5 A 50 kHz RFID Transponder Chip......Page 15
1 Introduction......Page 16
2.4 Organic Rectifier......Page 6
Contents......Page 8
Part I......Page 14
4.3 First RFID Products......Page 11
References......Page 12
2.1 Variability and Mismatch......Page 17
2.2 Time-Dependent Degradation......Page 18
3.1 Illustrative Circuit Example......Page 22
3 Reliability Analysis of Analog Integrated Circuits......Page 20
2.2.1 Time-Dependent Dielectric Breakdown......Page 19
References......Page 23
5 Flexible Organic Semiconductor RFID Tags......Page 21
5 Conclusions......Page 28
1 Introduction......Page 317
1 Introduction......Page 349
4.1 Solutions to Processing Variability......Page 24
4.2 Solutions to Time-Dependent Degradation......Page 25
Modeling and Simulation of Statistical Variability in Nanometer CMOS Technologies......Page 30
2 Sources of Statistical Variability......Page 31
3 Statistical Variability in Advanced CMOS Devices......Page 32
4 Statistical Compact Model Strategy......Page 39
5 Impact of Statistical Variability on SRAM......Page 42
6 Conclusions......Page 44
References......Page 45
Advanced Physical Design in Nanoscale Analog CMOS......Page 47
2 Pre-Layout Simulation......Page 48
3 Post-Layout Simulation......Page 49
4 Process Variability......Page 50
5.1 Quantum-Effect Mismatch Errors......Page 51
5.4 Strategy for Matching as Devices are Downscaled......Page 52
6.1 Restricting the Number of Gate Fingers (F)......Page 54
6.2 Device Optimum Current Density Ids/(W/L) Under Scaling......Page 55
6.4 Achieving Good Pattern Fidelity in Device Design......Page 56
7 Mitigating Long-Distance Mismatch Errors in Precision Circuits......Page 59
8.1 Clock and Shielded Analog Signal Distribution Physical Design......Page 60
8.2 Dense Metal Interconnect Physical Design......Page 61
9 Summary and Conclusions......Page 62
Robust Design for High Temperature and High Voltage Applications......Page 64
2 Nanoelectronics Semiconductor Technologies for Power Devices for EVs and HEVs Applications......Page 68
3.1 Safe Operating Area......Page 73
4.1 Electro-Thermal Simulation......Page 74
5 Packaging and Interconnects......Page 75
5.2 Thermal Management......Page 76
6 Conclusions......Page 77
References......Page 78
Radiation Effects and Hardening by Design in CMOS Technologies......Page 79
2.1 TID Effects......Page 80
2.2 Single Event Effects (SEEs)......Page 84
3.1 HBD for TID Effects......Page 86
3.2 HBD for Single Event Effects......Page 91
4 Conclusion......Page 95
References......Page 96
EMC Robust Design for Smart Power High Side Switches......Page 98
2 High Side Switches in Smart Power Technology......Page 99
3 DPI Test for High Side Switches—Measurement Method......Page 100
3.3 Operation Modes of the IC Under Test......Page 102
5 DPI Robustness in Off State—Problem Description......Page 104
6 Design Methodology—Pin Impedance Design......Page 105
7 Measurement Results......Page 110
8 Conclusion......Page 112
References......Page 113
Part II......Page 114
Noise-Coupled Delta-Sigma ADCS......Page 116
2.1 Quantization noise self coupling (QNSC)......Page 117
2.2 Quantization noise cross-coupling and time-interleaving (NCTI)......Page 123
3 SC circuit implementation......Page 129
4.1 QNSC prototype ∆Σ ADC......Page 133
4.2 NCTI prototype ∆Σ ADCs......Page 137
Very Low OSR Sigma-Delta Converters......Page 143
2.1 Delta-Sigma Modulators......Page 144
2.2 Incremental Data Converters......Page 146
3 High-Order MASH ΣΔ Modulator......Page 148
3.1 Comparison with a Nyquist-Rate A/D Converter......Page 149
3.2 Single-Stage vs. Cascaded ΣΔ......Page 150
3.3 Sample Architecture......Page 151
3.4 Power Efficiency......Page 153
4.1 Comparison of Incremental and ΣΔ Converters......Page 156
4.2 Pipeline Equivalency......Page 158
4.3 Removing the Input S/H......Page 160
4.4 Sample Architecture......Page 162
Comparator-Based Switched-Capacitor Delta-Sigma A/D Converters......Page 165
2 Switched-Capacitor Integrator......Page 166
3.1 Comparator Delay......Page 170
3.2 Comparator Offset......Page 171
3.3 Comparator Noise......Page 172
3.4 Zero-Crossing Based Implementation......Page 173
4.2 Current Source Output Resistance......Page 174
4.4 High Output Swing Implementation......Page 175
5 CBSC Noise-Shaping Filter......Page 176
6 A CBSC Delta-Sigma A/D Converter in 90 nm CMOS......Page 178
7 Conclusions......Page 183
VCO-Based Wideband Continuous-Time Sigma-Delta Analog-to-Digital Converters......Page 185
2 Background on VCO-Based Quantization......Page 186
3 A First Pass at Utilizing VCO-Based Quantization Within Continuous-Time Sigma-Delta ADC Structures......Page 191
4 Overcoming the Issue of Nonlinearity in the VCO-Based Quantizer......Page 193
5 Striving for 80 dB SNDR with 20 MHz Bandwidth......Page 195
6.1 VCO-Based Quantizer......Page 199
6.3 DAC Designs......Page 201
6.4 DEM Design......Page 203
6.5 Overall Implementation in 0.13 μ CMOS......Page 204
8 Conclusions......Page 207
Wideband Continuous-Time Multi-Bit Delta-Sigma ADCs......Page 210
2 A 20 MHz 68 dB Dynamic Range ∆Σ ADC Based on Time-Domain Quantizer and Feedback Element......Page 211
2.1 Multi-Bit Time-Based ADC Architecture [12, 13]......Page 212
2.3 Time-Domain Quantizer......Page 214
2.4 Spectrum of the PWM Signal DAC......Page 215
2.5 Design Considerations......Page 216
2.6 Experimental Results......Page 219
3.2.1 Jitter Sensitivity......Page 220
3.2.2 Static Device Mismatch......Page 222
3.3 Filter and Summing Amplifier......Page 224
3.4 Three-Bit Two-Step Quantizer......Page 225
3.5 Level-to-PWM Converter......Page 227
3.6 Clock Generator......Page 229
3.7 Simulated and Experimental Results......Page 230
References......Page 232
OVERSAMPLED DACs......Page 234
2.1 In-band Dynamic Range (DR)......Page 236
2.3 Single-Ended Output......Page 238
2.7 Out-of-band SNRout......Page 240
2.8 Output Power Stage......Page 241
4.1 Single-Bit vs. Multibit......Page 242
4.2 Switched-Capacitor D/A Interface......Page 243
4.3 Switched-Current......Page 245
5.1 Increasing the Quantizer Output Number of Bit......Page 249
5.3 Improving PSRR......Page 252
5.5 Improved Σ∆M for Idle-Tone Reduction......Page 255
5.6 Hybrid DAC......Page 256
6 High-Speed Oversampled DAC......Page 261
Part III......Page 263
1 RFID History......Page 265
2 RFID Market Landscape......Page 267
3.1 The Core Architecture......Page 268
3.3 RFID Standards and Applications Before the Epoch......Page 270
3.4 Bar Code Applications and Application Standards Before the Epoch......Page 271
3.5 Early RFID Standardisation Activities......Page 272
4.1 Project Overview......Page 273
4.2 BRIDGE Hardware Developments......Page 276
5 Privacy Concerns......Page 279
6 Regulations......Page 280
7 Conclusion......Page 281
The World’s Smallest RFID Chip Technology......Page 283
2.1 Chip Architecture......Page 284
2.3 High-Reliability Electron Beam Written ID Memory......Page 285
3.2 External Antenna on Double-Surface Electrode Chip......Page 288
4 Silicon on Insulator (SOI) Ultra-thin RFID Chip......Page 291
RF and Low Power Analog Design for RFID......Page 294
2 Rectifiers for UHF and HF RFID Tags......Page 295
2.1 General Rectifier Topologies......Page 296
2.2 UHF Rectifier Design......Page 297
2.3 HF Rectifier Design......Page 303
3 Power Management Design for RFID......Page 304
3.1 RF Limiter Design......Page 305
3.2 DC Limiter Design......Page 307
3.3 Regulator Design......Page 308
4.1 Data Receiver Design......Page 310
4.2 Data Slicer Design......Page 312
4.3 Additional RFID Circuits......Page 314
6 Conclusions......Page 315
References......Page 316
2 HF and UHF Power Generation with One Antenna Port......Page 321
2.1 Power Generator Architecture......Page 323
2.2 Multi Frequency Rectifier......Page 324
2.3 DC/DC Down Converter......Page 326
2.4 DC/DC Up Converter......Page 327
3 Local Oscillator......Page 328
4.1 HF RxD Unit......Page 330
4.2 UHF RxD Unit......Page 331
4.3 Shunt, TxD—Load Modulator and Backscatter Unit......Page 332
5 Conclusions......Page 334
1 Introduction......Page 336
2 Printed Electronics......Page 337
3 First Printed Circuits......Page 339
3.1 Printed Ring Oscillator......Page 340
3.2 Printed 4-Bit Manchester Chip......Page 341
4.1 Roadmap for Organic Electronics......Page 342
4.2 Roadmap for Printed RFID......Page 344
4.3 First RFID Products......Page 346
References......Page 347
2.1 Technology......Page 350
2.2 The RFID Measurement Setup......Page 352
2.3 Organic Transponder Chip......Page 353
2.4 Organic Rectifier......Page 354
2.5 Organic RFID Tag Using DC Load Modulation......Page 356
3 Methods to Increase Robustness of Digital Circuits......Page 358
3.1 Organic RFID Transponder Chip with Dual-Gate Architecture......Page 361
4 Vision for Commercialization......Page 362
5 A 50 kHz RFID Transponder Chip......Page 363
6 Conclusions......Page 368
4.1 Roadmap for Organic Electronics......Page 7
4.2 Roadmap for Printed RFID......Page 9
Cover......Page 1
2.1 Technology......Page 2
2.1 General Rectifier Topologies......Page 3
Preface......Page 5
Contributors......Page 10
3.1 Organic RFID Transponder Chip with Dual-Gate Architecture......Page 13
5 A 50 kHz RFID Transponder Chip......Page 15
1 Introduction......Page 16
2.4 Organic Rectifier......Page 6
Contents......Page 8
Part I......Page 14
4.3 First RFID Products......Page 11
References......Page 12
2.1 Variability and Mismatch......Page 17
2.2 Time-Dependent Degradation......Page 18
3.1 Illustrative Circuit Example......Page 22
3 Reliability Analysis of Analog Integrated Circuits......Page 20
2.2.1 Time-Dependent Dielectric Breakdown......Page 19
References......Page 23
5 Flexible Organic Semiconductor RFID Tags......Page 21
5 Conclusions......Page 28
1 Introduction......Page 317
1 Introduction......Page 349
4.1 Solutions to Processing Variability......Page 24
4.2 Solutions to Time-Dependent Degradation......Page 25
Modeling and Simulation of Statistical Variability in Nanometer CMOS Technologies......Page 30
2 Sources of Statistical Variability......Page 31
3 Statistical Variability in Advanced CMOS Devices......Page 32
4 Statistical Compact Model Strategy......Page 39
5 Impact of Statistical Variability on SRAM......Page 42
6 Conclusions......Page 44
References......Page 45
Advanced Physical Design in Nanoscale Analog CMOS......Page 47
2 Pre-Layout Simulation......Page 48
3 Post-Layout Simulation......Page 49
4 Process Variability......Page 50
5.1 Quantum-Effect Mismatch Errors......Page 51
5.4 Strategy for Matching as Devices are Downscaled......Page 52
6.1 Restricting the Number of Gate Fingers (F)......Page 54
6.2 Device Optimum Current Density Ids/(W/L) Under Scaling......Page 55
6.4 Achieving Good Pattern Fidelity in Device Design......Page 56
7 Mitigating Long-Distance Mismatch Errors in Precision Circuits......Page 59
8.1 Clock and Shielded Analog Signal Distribution Physical Design......Page 60
8.2 Dense Metal Interconnect Physical Design......Page 61
9 Summary and Conclusions......Page 62
Robust Design for High Temperature and High Voltage Applications......Page 64
2 Nanoelectronics Semiconductor Technologies for Power Devices for EVs and HEVs Applications......Page 68
3.1 Safe Operating Area......Page 73
4.1 Electro-Thermal Simulation......Page 74
5 Packaging and Interconnects......Page 75
5.2 Thermal Management......Page 76
6 Conclusions......Page 77
References......Page 78
Radiation Effects and Hardening by Design in CMOS Technologies......Page 79
2.1 TID Effects......Page 80
2.2 Single Event Effects (SEEs)......Page 84
3.1 HBD for TID Effects......Page 86
3.2 HBD for Single Event Effects......Page 91
4 Conclusion......Page 95
References......Page 96
EMC Robust Design for Smart Power High Side Switches......Page 98
2 High Side Switches in Smart Power Technology......Page 99
3 DPI Test for High Side Switches—Measurement Method......Page 100
3.3 Operation Modes of the IC Under Test......Page 102
5 DPI Robustness in Off State—Problem Description......Page 104
6 Design Methodology—Pin Impedance Design......Page 105
7 Measurement Results......Page 110
8 Conclusion......Page 112
References......Page 113
Part II......Page 114
Noise-Coupled Delta-Sigma ADCS......Page 116
2.1 Quantization noise self coupling (QNSC)......Page 117
2.2 Quantization noise cross-coupling and time-interleaving (NCTI)......Page 123
3 SC circuit implementation......Page 129
4.1 QNSC prototype ∆Σ ADC......Page 133
4.2 NCTI prototype ∆Σ ADCs......Page 137
Very Low OSR Sigma-Delta Converters......Page 143
2.1 Delta-Sigma Modulators......Page 144
2.2 Incremental Data Converters......Page 146
3 High-Order MASH ΣΔ Modulator......Page 148
3.1 Comparison with a Nyquist-Rate A/D Converter......Page 149
3.2 Single-Stage vs. Cascaded ΣΔ......Page 150
3.3 Sample Architecture......Page 151
3.4 Power Efficiency......Page 153
4.1 Comparison of Incremental and ΣΔ Converters......Page 156
4.2 Pipeline Equivalency......Page 158
4.3 Removing the Input S/H......Page 160
4.4 Sample Architecture......Page 162
Comparator-Based Switched-Capacitor Delta-Sigma A/D Converters......Page 165
2 Switched-Capacitor Integrator......Page 166
3.1 Comparator Delay......Page 170
3.2 Comparator Offset......Page 171
3.3 Comparator Noise......Page 172
3.4 Zero-Crossing Based Implementation......Page 173
4.2 Current Source Output Resistance......Page 174
4.4 High Output Swing Implementation......Page 175
5 CBSC Noise-Shaping Filter......Page 176
6 A CBSC Delta-Sigma A/D Converter in 90 nm CMOS......Page 178
7 Conclusions......Page 183
VCO-Based Wideband Continuous-Time Sigma-Delta Analog-to-Digital Converters......Page 185
2 Background on VCO-Based Quantization......Page 186
3 A First Pass at Utilizing VCO-Based Quantization Within Continuous-Time Sigma-Delta ADC Structures......Page 191
4 Overcoming the Issue of Nonlinearity in the VCO-Based Quantizer......Page 193
5 Striving for 80 dB SNDR with 20 MHz Bandwidth......Page 195
6.1 VCO-Based Quantizer......Page 199
6.3 DAC Designs......Page 201
6.4 DEM Design......Page 203
6.5 Overall Implementation in 0.13 μ CMOS......Page 204
8 Conclusions......Page 207
Wideband Continuous-Time Multi-Bit Delta-Sigma ADCs......Page 210
2 A 20 MHz 68 dB Dynamic Range ∆Σ ADC Based on Time-Domain Quantizer and Feedback Element......Page 211
2.1 Multi-Bit Time-Based ADC Architecture [12, 13]......Page 212
2.3 Time-Domain Quantizer......Page 214
2.4 Spectrum of the PWM Signal DAC......Page 215
2.5 Design Considerations......Page 216
2.6 Experimental Results......Page 219
3.2.1 Jitter Sensitivity......Page 220
3.2.2 Static Device Mismatch......Page 222
3.3 Filter and Summing Amplifier......Page 224
3.4 Three-Bit Two-Step Quantizer......Page 225
3.5 Level-to-PWM Converter......Page 227
3.6 Clock Generator......Page 229
3.7 Simulated and Experimental Results......Page 230
References......Page 232
OVERSAMPLED DACs......Page 234
2.1 In-band Dynamic Range (DR)......Page 236
2.3 Single-Ended Output......Page 238
2.7 Out-of-band SNRout......Page 240
2.8 Output Power Stage......Page 241
4.1 Single-Bit vs. Multibit......Page 242
4.2 Switched-Capacitor D/A Interface......Page 243
4.3 Switched-Current......Page 245
5.1 Increasing the Quantizer Output Number of Bit......Page 249
5.3 Improving PSRR......Page 252
5.5 Improved Σ∆M for Idle-Tone Reduction......Page 255
5.6 Hybrid DAC......Page 256
6 High-Speed Oversampled DAC......Page 261
Part III......Page 263
1 RFID History......Page 265
2 RFID Market Landscape......Page 267
3.1 The Core Architecture......Page 268
3.3 RFID Standards and Applications Before the Epoch......Page 270
3.4 Bar Code Applications and Application Standards Before the Epoch......Page 271
3.5 Early RFID Standardisation Activities......Page 272
4.1 Project Overview......Page 273
4.2 BRIDGE Hardware Developments......Page 276
5 Privacy Concerns......Page 279
6 Regulations......Page 280
7 Conclusion......Page 281
The World’s Smallest RFID Chip Technology......Page 283
2.1 Chip Architecture......Page 284
2.3 High-Reliability Electron Beam Written ID Memory......Page 285
3.2 External Antenna on Double-Surface Electrode Chip......Page 288
4 Silicon on Insulator (SOI) Ultra-thin RFID Chip......Page 291
RF and Low Power Analog Design for RFID......Page 294
2 Rectifiers for UHF and HF RFID Tags......Page 295
2.1 General Rectifier Topologies......Page 296
2.2 UHF Rectifier Design......Page 297
2.3 HF Rectifier Design......Page 303
3 Power Management Design for RFID......Page 304
3.1 RF Limiter Design......Page 305
3.2 DC Limiter Design......Page 307
3.3 Regulator Design......Page 308
4.1 Data Receiver Design......Page 310
4.2 Data Slicer Design......Page 312
4.3 Additional RFID Circuits......Page 314
6 Conclusions......Page 315
References......Page 316
2 HF and UHF Power Generation with One Antenna Port......Page 321
2.1 Power Generator Architecture......Page 323
2.2 Multi Frequency Rectifier......Page 324
2.3 DC/DC Down Converter......Page 326
2.4 DC/DC Up Converter......Page 327
3 Local Oscillator......Page 328
4.1 HF RxD Unit......Page 330
4.2 UHF RxD Unit......Page 331
4.3 Shunt, TxD—Load Modulator and Backscatter Unit......Page 332
5 Conclusions......Page 334
1 Introduction......Page 336
2 Printed Electronics......Page 337
3 First Printed Circuits......Page 339
3.1 Printed Ring Oscillator......Page 340
3.2 Printed 4-Bit Manchester Chip......Page 341
4.1 Roadmap for Organic Electronics......Page 342
4.2 Roadmap for Printed RFID......Page 344
4.3 First RFID Products......Page 346
References......Page 347
2.1 Technology......Page 350
2.2 The RFID Measurement Setup......Page 352
2.3 Organic Transponder Chip......Page 353
2.4 Organic Rectifier......Page 354
2.5 Organic RFID Tag Using DC Load Modulation......Page 356
3 Methods to Increase Robustness of Digital Circuits......Page 358
3.1 Organic RFID Transponder Chip with Dual-Gate Architecture......Page 361
4 Vision for Commercialization......Page 362
5 A 50 kHz RFID Transponder Chip......Page 363
6 Conclusions......Page 368
备用描述
"Analog Circuit Design contains the contribution of 18 tutorials of the 19th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of: Robust Design, chaired by Herman Casier, Consultant Sigma Delta Converters, chaired by Prof. Michiel Steyaert, Catholic University Leuven RFID, chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course ."--Publisher's website
开源日期
2020-11-29
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.