强化学习导论中文第二版 🔍
it-ebooks iBooker it-ebooks, it-ebooks-extra
英语 [en] · 中文 [zh] · PDF · 26.1MB · 2018 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning , Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
备用文件名
lgrsnf/强化学习导论中文第二版.pdf
备选标题
Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series)
备选标题
Reinforcement Learning, Second Edition : An Introduction
备选标题
Обучение с подкреплением: введение
备选作者
Ричард С. Саттон, Эндрю Дж. Барто; перевод с английского А. А. Слинкина
备选作者
Sutton, Richard S., Barto, Andrew G.
备选作者
Richard S. Sutton; Andrew G. Barto
备选作者
Саттон, Ричард С
备用出版商
A Bradford Book
备用出版商
Bradford Books
备用出版商
The MIT Press
备用出版商
AAAI Press
备用出版商
ДМК Пресс
备用版本
Adaptive computation and machine learning, Second edition, Cambridge, Massachusetts, 2018
备用版本
Adaptive computation and machine learning, 2018: 1, second edition, Cambridge, Mass, 2018
备用版本
MIT Press, Cambridge, Massachusetts, 2018
备用版本
United States, United States of America
备用版本
2-е изд., Москва, Russia, 2020
备用版本
Nov 13, 2018
元数据中的注释
Source title: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series)
元数据中的注释
На обл.: Цифра
Предм. указ.: с. 546-551
Пер.: Sutton, Richard S. Reinforcement learning 2nd ed. 978-0-262-03924-6
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 010417813
=005 20210423100821.0
=008 200713s2020\\\\ru\\\\\\\\\\\\000\0\rus\d
=017 \\ $a 7125-20 $b RuMoRGB
=020 \\ $a 978-5-97060-097-9 $c 500 экз.
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З818.6,0 $2 rubbk
=084 \\ $a З813.5,0 $2 rubbk
=084 \\ $a Ч30в2:З81,0 $2 rubbk
=100 1\ $a Саттон, Ричард С.
=245 00 $a Обучение с подкреплением : $b введение $c Ричард С. Саттон, Эндрю Дж. Барто ; перевод с английского А. А. Слинкина
=250 \\ $a 2-е изд.
=260 \\ $a Москва $b ДМК Пресс $c 2020
=300 \\ $a 551 с. $b ил., цв. ил. $c 24 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=500 \\ $a На обл.: Цифра
=500 \\ $a Предм. указ.: с. 546-551
=534 \\ $p Пер.: $a Sutton, Richard S. $t Reinforcement learning $b 2nd ed. $z 978-0-262-03924-6
=650 \7 $a Радиоэлектроника -- Кибернетика -- Бионика -- Биоэлектрические модели -- Нейронные сети $2 rubbk
=650 \7 $a Радиоэлектроника -- Кибернетика -- Искусственный интеллект -- Системы искусственного интеллекта $2 rubbk
=650 \7 $a Культура. Наука. Просвещение -- Народное образование. Педагогические науки -- Педагогика -- Методология педагогики -- Педагогика и другие науки -- Педагогика и кибернетика $2 rubbk
=700 1\ $a Барто, Эндрю Дж. $d 1948-
=852 4\ $a РГБ $b FB $j 2 20-47/121 $x 90
备用描述
Reinforcement learning is the learning of a mapping from situations to actions so as to maximize a scalar reward or reinforcement signal. The learner is not told which action to take, as in most forms of machine learning, but instead must discover which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions may affect not only the immediate reward, but also the next situation, and through that all subsequent rewards. These two characteristics -- trial-and-error search and delayed reward -- are the most important distinguishing features of reinforcement learning. Reinforcement learning is both a new and a very old topic in AI. The term appears to have been coined by Minsk (1961), and independently in control theory by Walz and Fu (1965). The earliest machine learning research now viewed as directly relevant was Samuel's (1959) checker player, which used temporal-difference learning to manage delayed reward much as it is used today. Of course learning and reinforcement have been studied in psychology for almost a century, and that work has had a very strong impact on the AI/engineering work. One could in fact consider all of reinforcement learning to be simply the reverse engineering of certain psychological learning processes (e.g. operant conditioning and secondary reinforcement). Reinforcement Learning is an edited volume of original research, comprising seven invited contributions by leading researchers.
开源日期
2024-02-07
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。