Compact Riemann Surfaces: An Introduction to Contemporary Mathematics (Universitext) 🔍
Jürgen Jost Springer Berlin, Universitext, 3d [rev. and exp.] ed, Berlin ; New York, 2006
英语 [en] · PDF · 1.5MB · 2006 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichm?ller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.
备用文件名
lgrsnf/D:/!genesis/library.nu/ca/_89205.ca05e8f35c18c7c7a5c2a07e9e7c6969.pdf
备用文件名
nexusstc/Compact Riemann Surfaces: An Introduction to Contemporary Mathematics/ca05e8f35c18c7c7a5c2a07e9e7c6969.pdf
备用文件名
zlib/Mathematics/Jurgen Jost/Compact Riemann Surfaces: An Introduction to Contemporary Mathematics_907994.pdf
备选作者
Jost, Jürgen
备选作者
Jürgen Jost
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用版本
Springer Nature (Textbooks & Major Reference Works), Berlin, Heidelberg, 2006
备用版本
Universitext, 3. ed., [Nachdr, Berlin, 2006 [erschienen] 2010
备用版本
3rd. ed., Berlin, GE, New York, NY, United States, 2006
备用版本
3rd ed. edition, August 18, 2006
备用版本
Germany, Germany
备用版本
3rd, PS, 2006
元数据中的注释
до 2011-01
元数据中的注释
lg483316
元数据中的注释
{"edition":"3","isbns":["3540330658","9783540330653"],"last_page":300,"publisher":"Springer","series":"Universitext"}
备用描述
Cover
......Page 1
Series: Universitext
......Page 2
Title: Compact Riemann Surfaces. An introduction to contemporary mathematics (Third Edition)
......Page 4
Copyright
......Page 5
Preface......Page 8
Preface to the 2nd edition......Page 14
Preface to the 3rd edition......Page 16
Contents......Page 18
1.1 Manifolds and Differentiable Manifolds......Page 20
Exercises for § 1.1......Page 21
1.2 Homotopy of Maps. The Fundamental Group......Page 22
1.3 Coverings......Page 25
Exercises for § 1.3......Page 33
1.4 Global Continuation of Functions on Simply-Connected Manifolds
......Page 34
2.1 The Concept of a Riemann Surface......Page 36
2.2 Some Simple Properties of Riemann Surfaces......Page 38
2.3 Metrics on Riemann Surfaces......Page 39
2.3.A Triangulations of Compact Riemann Surfaces......Page 50
2.4 Discrete Groups of Hyperbolic Isometries. Fundamental Polygons. Some Basic Concepts of Surface Topology and Geometry......Page 58
2.4.A The Topological Classification of Compact Riemann Surfaces......Page 73
2.5 The Theorems of Gauss-Bonnet and Riemann-Hurwitz......Page 76
2.6 A General Schwarz Lemma......Page 83
2.7 Conformal Structures on Tori......Page 91
Exercises for § 2.7......Page 96
3.1 Review: Banach and Hilbert Spaces. The HilbertSpace L^2
......Page 98
Exercises for § 3.1......Page 109
3.2 The Sobolev Space W^{1,2} = H^{1,2}
......Page 110
3.3 The Dirichlet Principle. Weak Solutions of the Poisson Equation
......Page 118
3.4 Harmonic and Subharmonic Functions......Page 122
Exercises for § 3.4......Page 128
3.5 The C^α Regularity Theory
......Page 129
3.6 Maps Between Surfaces. The Energy Integral. Definition and Simple Properties of Harmonic Maps
......Page 138
Exercises for § 3.6......Page 143
3.7 Existence of Harmonic Maps......Page 144
Exercises of § 3.7......Page 152
3.8 Regularity of Harmonic Maps......Page 153
3.9 Uniqueness of Harmonic Maps......Page 157
3.10 Harmonic Diffeomorphisms......Page 163
3.11 Metrics and Conformal Structures......Page 171
4.1 The Basic Definitions......Page 180
4.2 Harmonic Maps, Conformal Structures and Holomorphic Quadratic Differentials. Teichmüller’s Theorem
......Page 182
4.3 Fenchel-Nielsen Coordinates. An Alternative Approach to the Topology of Teichmüller Space
......Page 192
4.4 Uniformization of Compact Riemann Surfaces......Page 202
Exercises for § 4.4......Page 205
5.1 Preliminaries: Cohomology and Homology Groups......Page 206
5.2 Harmonic and Holomorphic Differential Forms on Riemann Surfaces
......Page 214
Exercises for § 5.2......Page 221
5.3 The Periods of Holomorphic and Meromorphic Differential Forms
......Page 222
5.4 Divisors. The Riemann-Roch Theorem......Page 227
Exercises for § 5.4......Page 238
5.5 Holomorphic 1-Forms and Metrics on Compact Riemann Surfaces......Page 239
5.6 Divisors and Line Bundles......Page 241
Exercises for § 5.6......Page 251
5.7 Projective Embeddings......Page 252
5.8 Algebraic Curves......Page 259
Exercises for § 5.8......Page 271
5.9 Abel’s Theorem and the Jacobi Inversion Theorem......Page 272
Exercises for § 5.9......Page 278
5.10 Elliptic Curves......Page 279
Exercises for § 5.10......Page 284
Sources and References......Page 286
Bibliography......Page 288
Index of Notation......Page 290
Index......Page 292
备用描述
Although Riemann Surfaces Are A Time-honoured Field, This Book Is Novel In Its Broad Perspective That Systematically Explores The Connection With Other Fields Of Mathematics. It Can Serve As An Introduction To Contemporary Mathematics As A Whole As It Develops Background Material From Algebraic Topology, Differential Geometry, The Calculus Of Variations, Elliptic Pde, And Algebraic Geometry. It Is Unique Among Textbooks On Riemann Surfaces In Including An Introduction To Teichmüller Theory. For This New Edition, The Author Has Expanded And Rewritten Several Sections To Include Additional Material And To Improve The Presentation. Topological Foundations -- Differential Geometry Of Riemann Surfaces -- Harmonic Maps -- Teichmüller Spaces -- Geometric Structures On Riemann Surfaces -- Erratum To: Characterizing Programming Systems Allowing Program Self-reference. Jürgen Jost. Includes Bibliographical References (p. [269]-270) And Index.
备用描述
Although Riemann surfaces are a time-honoured field, this book is novel in its broad perspective that systematically explores the connection with other fields of mathematics. It can serve as an introduction to contemporary mathematics as a whole as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. It is unique among textbooks on Riemann surfaces in including an introduction to Teichmüller theory. The analytic approach is likewise new as it is based on the theory of harmonic maps. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.
Erscheinungsdatum: 19.06.2006
备用描述
"Although Riemann surfaces are a time-honoured field, this book is novel in its broad perspective that systematically explores the connection with other fields of mathematics. It can serve as an introduction to contemporary mathematics as a whole as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. It is unique among textbooks on Riemann surfaces in including an introduction to Teichmuller theory. The analytic approach is likewise new as it is based on the theory of harmonic maps. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation."--Jacket
开源日期
2011-06-04
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。