Keras深度学习实战 🔍
安东尼奥 人民邮电出版社有限公司, Москва, Russia, 2018
英语 [en] · 中文 [zh] · PDF · 10.6MB · 2018 · 📘 非小说类图书 · 🚀/lgli/zlib · Save
描述
Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras. Downloading the example code for thi..
备用文件名
zlib/no-category/安东尼奥/Keras深度学习实战_18430591.pdf
备选标题
Deep Learning with Keras : Get to Grips with the Basics of Keras to Implement Fast and Efficient Deep-learning Models
备选标题
Библиотека Keras - инструмент глубокого обучения: реализация нейронных сетей с помощью библиотек Theano и TensorFlow
备选标题
Deep learning with Keras : implementing deep learning models and neural networks with the power of Python
备选标题
Deep learning with Keras : implement neural networks with Keras on Theano and TensorFlow
备选作者
Антонио Джулли, Суджит Пал; пер. с англ. Слинкин А. А
备选作者
Gulli, Antonio, Pal, Sujit
备选作者
Antonio Gulli; Sujit Pal
备选作者
Джулли, Антонио
备用出版商
Packt Publishing Limited
备用出版商
Packt; Packt Publishing
备用出版商
ДМК Пресс
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
Packt Publishing, Birmingham, UK, 2017
元数据中的注释
Предм. указ.: с. 290-293
Ориг.: Gulli, Antonio Deep learning with Keras 978-1-78712-842-2
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 010417613
=005 20201001120855.0
=008 200713s2018\\\\ru\\\\\\\\\\\\000\0\rus\d
=017 \\ $a 7014-20 $b RuMoRGB
=020 \\ $a 978-5-97060-573-8 $c 200 экз.
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З813.5-02,07 $2 rubbk
=084 \\ $a З973.236-018,07 $2 rubbk
=084 \\ $a З818.6,07 $2 rubbk
=100 1\ $a Джулли, Антонио
=245 00 $a Библиотека Keras - инструмент глубокого обучения : $b реализация нейронных сетей с помощью библиотек Theano и TensorFlow $c Антонио Джулли, Суджит Пал ; пер. с англ. Слинкин А. А.
=260 \\ $a Москва $b ДМК Пресс $c 2018
=300 \\ $a 293 с. $b ил. $c 22 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=500 \\ $a Предм. указ.: с. 290-293
=534 \\ $p Ориг.: $a Gulli, Antonio $t Deep learning with Keras $z 978-1-78712-842-2
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Кибернетика -- Искусственный интеллект -- Системы искусственного интеллекта -- Проектирование -- Пособие для специалистов $2 rubbk
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Вычислительная техника -- Вычислительные машины электронные цифровые -- Машины для обучения -- Программирование -- Пособие для специалистов $2 rubbk
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Кибернетика -- Бионика -- Биоэлектрические модели. Нейронные сети -- Пособие для специалистов $2 rubbk
=700 1\ $a Пал, Суджит
=852 \\ $a РГБ $b FB $j 2 20-43/278 $x 90
开源日期
2021-12-21
更多信息……

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。