A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems 🔍
Hanif D. Sherali, Warren P. Adams (auth.)
Springer US : Imprint : Springer, Nonconvex Optimization and Its Applications, Nonconvex Optimization and Its Applications 31, 1, 1999
英语 [en] · PDF · 19.5MB · 1999 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/zlib · Save
描述
This book deals with the theory and applications of the Reformulation- Linearization/Convexification Technique (RL T) for solving nonconvex optimization problems. A unified treatment of discrete and continuous nonconvex programming problems is presented using this approach. In essence, the bridge between these two types of nonconvexities is made via a polynomial representation of discrete constraints. For example, the binariness on a 0-1 variable x . can be equivalently J expressed as the polynomial constraint x . (1-x . ) = 0. The motivation for this book is J J the role of tight linear/convex programming representations or relaxations in solving such discrete and continuous nonconvex programming problems. The principal thrust is to commence with a model that affords a useful representation and structure, and then to further strengthen this representation through automatic reformulation and constraint generation techniques. As mentioned above, the focal point of this book is the development and application of RL T for use as an automatic reformulation procedure, and also, to generate strong valid inequalities. The RLT operates in two phases. In the Reformulation Phase, certain types of additional implied polynomial constraints, that include the aforementioned constraints in the case of binary variables, are appended to the problem. The resulting problem is subsequently linearized, except that certain convex constraints are sometimes retained in XV particular special cases, in the Linearization/Convexijication Phase. This is done via the definition of suitable new variables to replace each distinct variable-product term. The higher dimensional representation yields a linear (or convex) programming relaxation.
备用文件名
lgrsnf/A:\compressed\10.1007%2F978-1-4757-4388-3.pdf
备用文件名
nexusstc/A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems/bbc80bc4113ce224025b6ceb81d6a818.pdf
备用文件名
scihub/10.1007/978-1-4757-4388-3.pdf
备用文件名
zlib/Science (General)/Hanif D. Sherali, Warren P. Adams (auth.)/A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems_2104745.pdf
备选作者
by Hanif D. Sherali, Warren P. Adams
备选作者
Sherali, Hanif D., Adams, W. P.
备用出版商
Springer Nature
备用版本
Nonconvex Optimization and Its Applications -- 31, Nonconvex optimization and its applications -- 31., Boston, MA, United States, 1999
备用版本
Nonconvex optimization and its applications, New York, 2011
备用版本
United States, United States of America
备用版本
Springer Nature, New York, NY, 2013
备用版本
1, 20130417
备用版本
1999, 2010
元数据中的注释
lg950851
元数据中的注释
{"container_title":"Nonconvex Optimization and Its Applications","edition":"1","isbns":["1441948082","1475743882","9781441948083","9781475743883"],"issns":["1571-568X"],"last_page":518,"publisher":"Springer US","series":"Nonconvex Optimization and Its Applications 31"}
元数据中的注释
Online full text is restricted to subscribers.
Also available in print.
Mode of access: World Wide Web.
Also available in print.
Mode of access: World Wide Web.
备用描述
This book addresses a new method for generating tight linear or convex programming relaxations for discrete and continuous nonconvex programming problems. Problems of this type arise in many economics, location-allocation, scheduling and routing, and process control and engineering design applications. The principal thrust is to commence with a model that affords a useful representation and structure, and then to further strengthen this representation through an automatic reformulation and constraint generation technique. The contents of this book comprise the original work of the authors compiled from several journal publications, and not covered in any other book on this subject. The outstanding feature of this book is that it offers for the first time a unified treatment of discrete and continuous nonconvex programming problems. In essence, the bridge between these two types of nonconvexities is made via a polynomial representation of discrete constraints. The book lays the foundation of an idea that is stimulating and that has served to enhance the solubility of many challenging problems in the field. Audience: This book is intended for researchers and practitioners who work in the area of discrete or continuous nonlinear, nonconvex optimization problems, as well as for students who are interested in learning about techniques for solving such problems.
备用描述
Front Matter....Pages i-xxiii
Introduction....Pages 1-20
Front Matter....Pages 21-21
RLT Hierarchy for Mixed-Integer Zero-One Problems....Pages 23-60
Generalized Hierarchy for Exploiting Special Structures in Mixed-Integer Zero-One Problems....Pages 61-102
RLT Hierarchy for General Discrete Mixed-Integer Problems....Pages 103-129
Generating Valid Inequalities and Facets Using RLT....Pages 131-183
Persistency in Discrete Optimization....Pages 185-260
Front Matter....Pages 261-261
RLT-Based Global Optimization Algorithms for Nonconvex Polynomial Programming Problems....Pages 263-295
Reformulation-Convexification Technique for Quadratic Programs and Some Convex Envelope Characterizations....Pages 297-367
Reformulation-Convexification Technique for Polynomial Programs: Design and Implementation....Pages 369-402
Front Matter....Pages 403-403
Applications to Discrete Problems....Pages 405-439
Applications to Continuous Problems....Pages 441-491
Back Matter....Pages 493-516
Introduction....Pages 1-20
Front Matter....Pages 21-21
RLT Hierarchy for Mixed-Integer Zero-One Problems....Pages 23-60
Generalized Hierarchy for Exploiting Special Structures in Mixed-Integer Zero-One Problems....Pages 61-102
RLT Hierarchy for General Discrete Mixed-Integer Problems....Pages 103-129
Generating Valid Inequalities and Facets Using RLT....Pages 131-183
Persistency in Discrete Optimization....Pages 185-260
Front Matter....Pages 261-261
RLT-Based Global Optimization Algorithms for Nonconvex Polynomial Programming Problems....Pages 263-295
Reformulation-Convexification Technique for Quadratic Programs and Some Convex Envelope Characterizations....Pages 297-367
Reformulation-Convexification Technique for Polynomial Programs: Design and Implementation....Pages 369-402
Front Matter....Pages 403-403
Applications to Discrete Problems....Pages 405-439
Applications to Continuous Problems....Pages 441-491
Back Matter....Pages 493-516
开源日期
2013-08-01
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.