Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60) (Graduate Texts in Mathematics (60)) 🔍
V. I. Arnold, A. Weinstein, K. Vogtmann
Springer-Verlag Berlin Heidelberg, Graduate texts in mathematics ;, 60, 2nd ed., New York, New York State, 1989
英语 [en] · PDF · 21.9MB · 1989 · 📘 非小说类图书 · 🚀/duxiu/lgli/lgrs/nexusstc/zlib · Save
描述
This book is an excellent introduction to the world of classical physics for NON-PHYSICISTS. While some physicists will no doubt find it accessible, there is considerable reduction of physical concepts in order to get to the heart of the ideas underlying the formalism. Also, the material goes beyond what most physicists (non-theoreticians) will find practical.
He focuses largely on a geometric presentation, in the language of differential geometry, symplectic geometry, differential forms, Riemannian manifolds and includes a large amount of algebraic necessities. This is not a cookbook for learning how to solve classical mechanics, nor is it a math book per se, but it is a wonderful collection of introductions to a vast amount of useful mathematical formalism that permeates the physical literature. I would strongly recommend it to someone needing a thorough supplementary mechanics text, one that relies on very little physical insight and focuses on the geometric and algebraic structures underlying them.
The chapters are very well self-contained for the most part so you can skip to topics you find more appealing without feeling lost. Also, his presentation style is very clever, in case you're a fan of quick thinking and novel presentations (who isn't?).
The prerequisites are familiarity with somewhat advanced calculus and "mathematical maturity". Basic knowledge of group theory would also make it an easier read.
He focuses largely on a geometric presentation, in the language of differential geometry, symplectic geometry, differential forms, Riemannian manifolds and includes a large amount of algebraic necessities. This is not a cookbook for learning how to solve classical mechanics, nor is it a math book per se, but it is a wonderful collection of introductions to a vast amount of useful mathematical formalism that permeates the physical literature. I would strongly recommend it to someone needing a thorough supplementary mechanics text, one that relies on very little physical insight and focuses on the geometric and algebraic structures underlying them.
The chapters are very well self-contained for the most part so you can skip to topics you find more appealing without feeling lost. Also, his presentation style is very clever, in case you're a fan of quick thinking and novel presentations (who isn't?).
The prerequisites are familiarity with somewhat advanced calculus and "mathematical maturity". Basic knowledge of group theory would also make it an easier read.
备用文件名
lgli/Springer.Mathematical.Methods.Of.Classical.Mechanics.(2Ed.1989).pdf
备用文件名
lgrsnf/Springer.Mathematical.Methods.Of.Classical.Mechanics.(2Ed.1989).pdf
备用文件名
zlib/Mathematics/Mathematical Physics/V. I. Arnold, A. Weinstein, K. Vogtmann/Mathematical Methods Of Classical Mechanics_542417.pdf
备选标题
Matematicheskie metody klassicheskoĭ mekhaniki
备选作者
V.I. Arnold; translated by K. Vogtmann and A. Weinstein
备选作者
V. I. Arnold; Transl. by K. Vogtmann a. A. Weinstein
备选作者
Vladimir I. Arnold; K. Vogtmann; A. Weinstein
备选作者
Arnolʹd, V. I., V. I. Arnol'd
备选作者
Vladimir Igorevich Arnolʹd
备选作者
Арнольд, Владимир Игоревич
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
Copernicus
备用出版商
Telos
备用版本
Graduate Texts in Mathematics, Volume 60, Second edition, Berlin, Germany, 1989
备用版本
Graduate texts in mathematics ;, 60, 2nd ed., New York, New York State, 1997
备用版本
Graduate texts in mathematics, 60, 2nd ed., 3rd corr. print, New York, ©1989
备用版本
Springer Nature (Textbooks & Major Reference Works), New York, NY, 1989
备用版本
United States, United States of America
备用版本
2. ed., New York [etc.], Unknown, 1989
备用版本
Germany, Germany
备用版本
2nd, PS, 1989
备用版本
2000
元数据中的注释
Springer -- 1
元数据中的注释
lg114217
元数据中的注释
{"edition":"2","isbns":["0387968903","3540968903","9780387968902","9783540968900"],"last_page":516,"publisher":"Springer","series":"Graduate Texts in Mathematics"}
元数据中的注释
Translated from the Russian by K.Vogtmann & A.Weinstein.
元数据中的注释
Includes bibliographical references and index.
Translation of: Mathematicheskie metody klassicheskoĭ mekhaniki.
Translation of: Mathematicheskie metody klassicheskoĭ mekhaniki.
元数据中的注释
Includes bibliographical references and index.
"Corrected fourth printing"--T.p. verso.
"Corrected fourth printing"--T.p. verso.
元数据中的注释
Bookmarks: p1 (p1): Part I NEWTONIAN MECHANICS
p1-1 (p3): Chapter 1 Experimental facts
p1-1-1 (p3): 1. The principles of relativity and determinacy
p1-1-2 (p4): 2. The galilean group and Newton's equations
p1-1-3 (p11): 3. Examples of mechanical systems
p1-2 (p15): Chapter 2 Investigation of the equations of motion
p1-2-1 (p15): 4. Systems with one degree of freedom
p1-2-2 (p22): 5. Systems with two degrees of freedom
p1-2-3 (p28): 6. Conservative force fields
p1-2-4 (p30): 7. Angular momentum
p1-2-5 (p33): 8. Investigation of motion in a central field
p1-2-6 (p42): 9. The motion of a point in three-space
p1-2-7 (p44): 10. Motions of a system of n pomts
p1-2-8 (p50): 11. The method of similarity
p2 (p53): Part Ⅱ LAGRANGIAN MECHANICS
p2-1 (p55): Chapter 3 Variational principles
p2-1-1 (p55): 12. Calculus of variations
p2-1-2 (p59): 13. Lagrange's equations
p2-1-3 (p61): 14. Legendre transformations
p2-1-4 (p65): 15. Hamilton's equations
p2-1-5 (p68): 16. Liouville's theorem
p2-2 (p75): Chapter 4 Lagrangian mechanics on manifolds
p2-2-1 (p75): 17. Holonomic constraints
p2-2-2 (p77): 18. Differentiable manifolds
p2-2-3 (p83): 19. Lagrangian dynamical systems
p2-2-4 (p88): 20. E. Noether's theorem
p2-2-5 (p91): 21. D'Alembert's principle
p2-3 (p98): Chapter 5 Oscillations
p2-3-1 (p98): 22. Linearization
p2-3-2 (p103): 23. Small oscillations
p2-3-3 (p110): 24. Behavior of characteristic frequencies
p2-3-4 (p113): 25. Parametric resonance
p2-4 (p123): Chapter 6 Rigid Bodies
p2-4-1 (p123): 26. Motion in a moving coordinate system
p2-4-2 (p129): 27. Inertial forces and the Coriolis force
p2-4-3 (p133): 28. Rigid bodies
p2-4-4 (p142): 29. Euler's equations. Poinsot's description of the motion
p2-4-5 (p148): 30. Lagrange's top
p2-4-6 (p154): 31. Sleeping tops and fast tops
p3 (p161): Part Ⅲ HAMILTONIAN MECHANICS
p3-1 (p163): Chapter 7 Differential forms
p3-1-1 (p163): 32. Exterior forms
p3-1-2 (p170): 33. Exterior multiplication
p3-1-3 (p174): 34. Differential forms
p3-1-4 (p181): 35. Integration of differential forms
p3-1-5 (p188): 36. Exterior differentiation
p3-2 (p201): Chapter 8 Symplectic manifolds
p3-2-1 (p201): 37. Symplectic structures on manifolds
p3-2-2 (p204): 38. Hamiltonian phase flows and their integral invariants
p3-2-3 (p208): 39. The Lie algebra of vector fields
p3-2-4 (p214): 40. The Lie algebra of hamiltonian functions
p3-2-5 (p219): 41. Symplectic geometry
p3-2-6 (p225): 42. Parametric resonance in systems with many degrees of freedom
p3-2-7 (p229): 43. A symplectic atlas
p3-3 (p233): Chapter 9 Canonical formalism
p3-3-1 (p233): 44. The integral invariant of Poincare-Cartan
p3-3-2 (p240): 45. Applications of the integral invariant of Poincare-Cartan
p3-3-3 (p248): 46. Huygens' principle
p3-3-4 (p258): 47. The Hamilton-Jacobi method for integrating Hamilton's canonical equations
p3-3-5 (p266): 48. Generating functions
p3-4 (p271): Chapter 10 Introduction to perturbation theory
p3-4-1 (p271): 49. Integrable systems
p3-4-2 (p279): 50. Action-angle variables
p3-4-3 (p285): 51. Averaging
p3-4-4 (p291): 52. Averaging of perturbations
p4 (p301): Appendix 1 Riemannian curvature
p5 (p318): Appendix 2 Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids
p6 (p343): Appendix 3 Symplectic structures on algebraic manifolds
p7 (p349): Appendix 4 Contact structures
p8 (p371): Appendix 5 Dynamical systems with symmetries
p9 (p381): Appendix 6 Normal forms of quadratic hamiltonians
p10 (p385): Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories
p11 (p399): Appendix 8 Theory of perturbations of conditionally periodic motion, and Kolmogorov's theorem
p12 (p416): Appendix 9 Poincare's geometric theorem, its generalizations and applications
p13 (p425): Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters
p14 (p438): Appendix 11 Short wave asymptotics
p15 (p446): Appendix 12 Lagrangian singularities
p16 (p453): Appendix 13 The Korteweg-de Vries equation
p17 (p456): Appendix 14 Poisson structures
p18 (p469): Appendix 15 On elliptic coordinates
p19 (p480): Appendix 16 Singularities of ray systems
p20 (p503): Index
p1-1 (p3): Chapter 1 Experimental facts
p1-1-1 (p3): 1. The principles of relativity and determinacy
p1-1-2 (p4): 2. The galilean group and Newton's equations
p1-1-3 (p11): 3. Examples of mechanical systems
p1-2 (p15): Chapter 2 Investigation of the equations of motion
p1-2-1 (p15): 4. Systems with one degree of freedom
p1-2-2 (p22): 5. Systems with two degrees of freedom
p1-2-3 (p28): 6. Conservative force fields
p1-2-4 (p30): 7. Angular momentum
p1-2-5 (p33): 8. Investigation of motion in a central field
p1-2-6 (p42): 9. The motion of a point in three-space
p1-2-7 (p44): 10. Motions of a system of n pomts
p1-2-8 (p50): 11. The method of similarity
p2 (p53): Part Ⅱ LAGRANGIAN MECHANICS
p2-1 (p55): Chapter 3 Variational principles
p2-1-1 (p55): 12. Calculus of variations
p2-1-2 (p59): 13. Lagrange's equations
p2-1-3 (p61): 14. Legendre transformations
p2-1-4 (p65): 15. Hamilton's equations
p2-1-5 (p68): 16. Liouville's theorem
p2-2 (p75): Chapter 4 Lagrangian mechanics on manifolds
p2-2-1 (p75): 17. Holonomic constraints
p2-2-2 (p77): 18. Differentiable manifolds
p2-2-3 (p83): 19. Lagrangian dynamical systems
p2-2-4 (p88): 20. E. Noether's theorem
p2-2-5 (p91): 21. D'Alembert's principle
p2-3 (p98): Chapter 5 Oscillations
p2-3-1 (p98): 22. Linearization
p2-3-2 (p103): 23. Small oscillations
p2-3-3 (p110): 24. Behavior of characteristic frequencies
p2-3-4 (p113): 25. Parametric resonance
p2-4 (p123): Chapter 6 Rigid Bodies
p2-4-1 (p123): 26. Motion in a moving coordinate system
p2-4-2 (p129): 27. Inertial forces and the Coriolis force
p2-4-3 (p133): 28. Rigid bodies
p2-4-4 (p142): 29. Euler's equations. Poinsot's description of the motion
p2-4-5 (p148): 30. Lagrange's top
p2-4-6 (p154): 31. Sleeping tops and fast tops
p3 (p161): Part Ⅲ HAMILTONIAN MECHANICS
p3-1 (p163): Chapter 7 Differential forms
p3-1-1 (p163): 32. Exterior forms
p3-1-2 (p170): 33. Exterior multiplication
p3-1-3 (p174): 34. Differential forms
p3-1-4 (p181): 35. Integration of differential forms
p3-1-5 (p188): 36. Exterior differentiation
p3-2 (p201): Chapter 8 Symplectic manifolds
p3-2-1 (p201): 37. Symplectic structures on manifolds
p3-2-2 (p204): 38. Hamiltonian phase flows and their integral invariants
p3-2-3 (p208): 39. The Lie algebra of vector fields
p3-2-4 (p214): 40. The Lie algebra of hamiltonian functions
p3-2-5 (p219): 41. Symplectic geometry
p3-2-6 (p225): 42. Parametric resonance in systems with many degrees of freedom
p3-2-7 (p229): 43. A symplectic atlas
p3-3 (p233): Chapter 9 Canonical formalism
p3-3-1 (p233): 44. The integral invariant of Poincare-Cartan
p3-3-2 (p240): 45. Applications of the integral invariant of Poincare-Cartan
p3-3-3 (p248): 46. Huygens' principle
p3-3-4 (p258): 47. The Hamilton-Jacobi method for integrating Hamilton's canonical equations
p3-3-5 (p266): 48. Generating functions
p3-4 (p271): Chapter 10 Introduction to perturbation theory
p3-4-1 (p271): 49. Integrable systems
p3-4-2 (p279): 50. Action-angle variables
p3-4-3 (p285): 51. Averaging
p3-4-4 (p291): 52. Averaging of perturbations
p4 (p301): Appendix 1 Riemannian curvature
p5 (p318): Appendix 2 Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids
p6 (p343): Appendix 3 Symplectic structures on algebraic manifolds
p7 (p349): Appendix 4 Contact structures
p8 (p371): Appendix 5 Dynamical systems with symmetries
p9 (p381): Appendix 6 Normal forms of quadratic hamiltonians
p10 (p385): Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories
p11 (p399): Appendix 8 Theory of perturbations of conditionally periodic motion, and Kolmogorov's theorem
p12 (p416): Appendix 9 Poincare's geometric theorem, its generalizations and applications
p13 (p425): Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters
p14 (p438): Appendix 11 Short wave asymptotics
p15 (p446): Appendix 12 Lagrangian singularities
p16 (p453): Appendix 13 The Korteweg-de Vries equation
p17 (p456): Appendix 14 Poisson structures
p18 (p469): Appendix 15 On elliptic coordinates
p19 (p480): Appendix 16 Singularities of ray systems
p20 (p503): Index
元数据中的注释
Библиогр.: с. 503-509
Указ.
Указ.
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 000381046
=003 RuMoRGB
=005 20020427120000.0
=008 020220s1989\\\\xx\uuzm\|\\\\\|\\\\|eng\d
=017 \\ $a И01422-2-02 $b РГБ
=020 \\ $a 0-387-96890-3 (New York)
=035 \\ $a (RuMoRGB)CURIK-0054785
=040 \\ $a RuMoRGB $b rus $c RuMoRGB
=041 0\ $a eng
=084 \\ $a В23я73-1 $2 rubbk
=100 1\ $a Арнольд, Владимир Игоревич $d 1937-2010.
=245 00 $a Mathematical methods of classical mechanics $c V. I. Arnold; Transl. by K. Vogtmann a. A. Weinstein
=250 \\ $a 2. ed.
=260 \\ $a New York [etc.] $b Springer $c Cop. 1989
=300 \\ $a IX, 516, [8] с. $b ил. $c 24 см
=504 \\ $a Библиогр.: с. 503-509
=555 \\ $a Указ.
=650 \7 $a Теоретическая механика -- Учебник для высшей школы $2 rubbk
=773 18 $7 nnas $g 60 $t Graduate texts in mathematics : GTM $d New York etc. : Springer, Cop. 1971- $h 24 см $x 0072-5285 $w 000864590
=852 \\ $a РГБ $b FB $j 15 85-5/18-8 $x 90
=001 000381046
=003 RuMoRGB
=005 20020427120000.0
=008 020220s1989\\\\xx\uuzm\|\\\\\|\\\\|eng\d
=017 \\ $a И01422-2-02 $b РГБ
=020 \\ $a 0-387-96890-3 (New York)
=035 \\ $a (RuMoRGB)CURIK-0054785
=040 \\ $a RuMoRGB $b rus $c RuMoRGB
=041 0\ $a eng
=084 \\ $a В23я73-1 $2 rubbk
=100 1\ $a Арнольд, Владимир Игоревич $d 1937-2010.
=245 00 $a Mathematical methods of classical mechanics $c V. I. Arnold; Transl. by K. Vogtmann a. A. Weinstein
=250 \\ $a 2. ed.
=260 \\ $a New York [etc.] $b Springer $c Cop. 1989
=300 \\ $a IX, 516, [8] с. $b ил. $c 24 см
=504 \\ $a Библиогр.: с. 503-509
=555 \\ $a Указ.
=650 \7 $a Теоретическая механика -- Учебник для высшей школы $2 rubbk
=773 18 $7 nnas $g 60 $t Graduate texts in mathematics : GTM $d New York etc. : Springer, Cop. 1971- $h 24 см $x 0072-5285 $w 000864590
=852 \\ $a РГБ $b FB $j 15 85-5/18-8 $x 90
备用描述
In this text, the author constructs the mathematical apparatus of classical mechanics from the beginning, examining all the basic problems in dynamics, including the theory of oscillations, the theory of rigid body motion, and the Hamiltonian formalism. This modern approch, based on the theory of the geometry of manifolds, distinguishes iteself from the traditional approach of standard textbooks. Geometrical considerations are emphasized throughout and include phase spaces and flows, vector fields, and Lie groups. The work includes a detailed discussion of qualitative methods of the theory of dynamical systems and of asymptotic methods like perturbation techniques, averaging, and adiabatic invariance.
Erscheinungsdatum: 16.05.1989
Erscheinungsdatum: 16.05.1989
备用描述
In this text, the author constructs the mathematical apparatus of classical mechanics from the beginning, examining all the basic problems in dynamics, including the theory of oscillations, the theory of rigid body motion, and the Hamiltonian formalism. This modern approach, based on the theory of the geometry of manifolds, distinguishes itself from the traditional approach of standard textbooks. Geometrical considerations are emphasized throughout and include phase spaces and flows, vector fields, and Lie groups. The work includes a detailed discussion of qualitative methods of the theory of dynamical systems and of asymptotic methods like perturbation techniques, averaging, and adiabatic invariance
备用描述
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
备用描述
V.i. Arnolʹd ; Translated By K. Vogtmann And A. Weinstein. Translation Of: Mathematicheskie Metody Klassicheskoĭ Mekhaniki. Includes Index. Bibliography: P.
开源日期
2009-08-06
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.