Hopf Bifurcation Analysis: A Frequency Domain Approach (World Scientific Series in Nonlinear Science, Series a) 🔍
Chen, Guanrong, Moiola, Jorge Luis
World Scientific Publishing Company, World Scientific Series on Nonlinear Science Series A, World scientific series on nonlinear science. Ser. A Monographs and treatises 21, 1996
英语 [en] · DJVU · 4.1MB · 1996 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular and degenerate Hopf bifurcations from the time domain approach can be translated and reformulated into the corresponding frequency domain setting, and be reconfirmed and rediscovered by using the frequency domain methods, is also explained. The description of how the frequency domain approach can be used to obtain several types of standard bifurcation conditions for general nonlinear dynamical systems is given as well as is demonstrated a very rich pictorial gallery of local bifurcation diagrams for nonlinear systems under simultaneous variations of several system parameters. In conjunction with this graphical analysis of local bifurcation diagrams, the defining and nondegeneracy conditions for several degenerate Hopf bifurcations is presented. With a great deal of algebraic computation, some higher-order harmonic balance approximation formulas are derived, for analyzing the dynamical behavior in small neighborhoods of certain types of degenerate Hopf bifurcations that involve multiple limit cycles and multiple limit points of periodic solutions. In addition, applications in chemical, mechanical and electrical engineering as well as in biology are discussed. This book is designed and written in a style of research monographs rather than classroom textbooks, so that the most recent contributions to the field can be included with references.
备用文件名
lgli/K:\!genesis\0day\kolxoz\80\M_Mathematics\MC_Calculus\MCde_Differential equations\Moiola J.L., Chen G. Hopf bifurcation analysis. A frequency domain approach (WS, 1996)(T)(C)(O)(342s)_MCde_.djvu
备用文件名
lgrsnf/K:\!genesis\0day\kolxoz\80\M_Mathematics\MC_Calculus\MCde_Differential equations\Moiola J.L., Chen G. Hopf bifurcation analysis. A frequency domain approach (WS, 1996)(T)(C)(O)(342s)_MCde_.djvu
备用文件名
lgli/M_Mathematics/MC_Calculus/MCde_Differential equations/Moiola J.L., Chen G. Hopf bifurcation analysis. A frequency domain approach (WS, 1996)(T)(C)(O)(342s)_MCde_.djvu
备用文件名
nexusstc/Hopf Bifurcation Analysis: A Frequency Domain Approach/b190b7a841535c3fb510a020c1537fee.djvu
备用文件名
zlib/Mathematics/Chen, Guanrong; Moiola, Jorge L/HOPF Bifurcation Analysis: A Frequency Domain Approach_3372323.djvu
备选标题
Hopf Bifurcation Analysis: A Frequency Domain Approach A Frequency Domain Approach
备选作者
Jorge L Moiola; Guanrong Chen; World Scientific (Firm)
备选作者
Guanrong Chen; Jorge Luis Moiola
备选作者
Chen Guan Rong
备用出版商
World Scientific Publishing Co Pte Ltd
备用出版商
Ladybird Books Ltd
备用出版商
Penguin Books Ltd
备用版本
World Scientific series on nonlinear science. Series A,, vol. 21, Singapore, River Edge, NJ, Singapore, 1996
备用版本
World Scientific Publishing Company, Singapore, 1996
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
Illustrated, 1996
备用版本
1, 19960409
元数据中的注释
kolxoz -- 80
元数据中的注释
lg2130619
元数据中的注释
{"container_title":"World Scientific Series on Nonlinear Science Series A","isbns":["0141893001","9780141893006","9789810226282","9789812798633","9810226284","9812798633"],"issns":["1793-1010"],"last_page":326,"publisher":"WORLD SCIENTIFIC","series":"World scientific series on nonlinear science. Ser. A Monographs and treatises 21"}
元数据中的注释
Includes bibliographical references (p. 299-310) and indexes.
备用描述
1. Introduction. 1.1. Stability bifurcations. 1.2. Center manifold theorem. 1.3. Limit cycles and degenerate Hopf bifurcations -- 2. The Hopf bifurcation theorem. 2.1. Introduction. 2.2. The Hopf bifurcation theorem in the time domain. 2.3. The Hopf theorem in the frequency domain. 2.4. Equivalence of the two Hopf theorems. 2.5. Advantages of the frequency domain approach. 2.6. An application of the graphical Hopf theorem -- 3. Continuation of bifurcation curves on the parameter plane. 3.1. Introduction. 3.2. Static and dynamic bifurcations. 3.3. Bifurcation analysis in the frequency domain. 3.4. Degenerate Hopf bifurcations of co-dimension 1. 3.5. Applications and examples -- 4. Degenerate bifurcations in the space of system parameters. 4.1. Introduction. 4.2. Multiplicity of equilibrium solutions. 4.3. Multiple Hopf bifurcation points. 4.4. Degenerate Hopf bifurcations and the singularity theory. 4.5. Degenerate Hopf bifurcations and feedback systems. 4.6. Degenerate Hopf bifurcations and the graphical Hopf theorem. 4.7. Some applications -- 5. High-order Hopf bifurcation formulas. 5.1. Introduction. 5.2. Approximation of periodic solutions by higher-order formulas. 5.3. Continuation of periodic solutions: Degenerate cases. 5.4. Local bifurcation diagrams and the graphical Hopf theorem. 5.5. Algorithms for recovering periodic solutions. 5.6. Multiple limit cycles and numerical problems -- 6. Hopf bifurcation in nonlinear systems with time delays. 6.1. Introduction. 6.2. Conditions for degenerate bifurcations in time-delayed systems. 6.3. Applications in control systems. 6.4. Time-delayed feedback systems: The general case. 6.5. Application examples -- 7. Birth of multiple limit cycles. 7.1. Introduction. 7.2. Harmonic balance and curvature coefficients. 7.3. Some application examples. 7.4. Controlling the multiplicities of limit cycles
备用描述
The frequency domain approach is presented in this text, for both regular and degenerate Hopf bifurcation analyses. With algebraic computation, some higher-order harmonic balance approximation formulae are derived. Applications in chemical, mechanical and electrical engineering are also discussed.
备用描述
Content: The Hopf bifurcation theorem
continuation of bifurcation curves on the parameter plane
degenerate bifurcations in the space of system parameters
high-order Hopf bifurcation formulas
Hopf bifurcation in nonlinear systems with time delays
birth of multiple limit cycles
appendix.
continuation of bifurcation curves on the parameter plane
degenerate bifurcations in the space of system parameters
high-order Hopf bifurcation formulas
Hopf bifurcation in nonlinear systems with time delays
birth of multiple limit cycles
appendix.
开源日期
2017-10-15
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.