Machine Learning Applications In Software Engineering (Series on Software Engineering and Knowledge Engineering) 🔍
Du Zhang, Jeffrey J. P. Tsai, Jeffrey J.-P Tsai World Scientific Pub Co Inc, World Scientific Publishing Company, Hackensack, N.J., 2005
英语 [en] · PDF · 26.3MB · 2005 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
Machine learning deals with the issue of how to build computer programs that improve their performance at some tasks through experience. Machine learning algorithms have proven to be of great practical value in a variety of application domains. Not surprisingly, the field of software engineering turns out to be a fertile ground where many software development and maintenance tasks could be formulated as learning problems and approached in terms of learning algorithms. This book deals with the subject of machine learning applications in software engineering. It provides an overview of machine learning, summarizes the state-of-the-practice in this niche area, gives a classification of the existing work, and offers some application guidelines. Also included in the book is a collection of previously published papers in this research area.
备用文件名
lgli/_348509.b0e69981f145933698e89bb1c0e714e8.pdf
备用文件名
lgrsnf/_348509.b0e69981f145933698e89bb1c0e714e8.pdf
备用文件名
zlib/Computers/Computer Science/Du Zhang, Jeffrey J. P. Tsai/Machine Learning Applications In Software Engineering (Series on Software Engineering and Knowledge Engineering)_1067790.pdf
备选标题
Handbook Of Software Engineering And Knowledge Engineering, Vol 3: Recent Advances Vol 3: Recent Advances
备选作者
Du Zhang; Jeffrey J.-P Tsai; World Scientific (Firm)
备选作者
Du Zhang; Jeffrey J -P Tsai; World Scientific (Firm)
备选作者
Zhang, Du; Tsai, Jeffrey J P
备用出版商
World Scientific Publishing Co Pte Ltd
备用出版商
World Scientific Publishing Company
备用版本
Series on software engineering and knowledge engineering, v. 16, Hackensack, N.J, ©2005
备用版本
Series on software engineering and knowledge engineering, v. 16, Hackensack, N.J, c2005
备用版本
Singapore Hackensack N.J, ©2005
备用版本
Illustrated, PS, 2005
备用版本
Singapore, Singapore
备用版本
February 28, 2005
备用版本
2, 20050221
元数据中的注释
до 2011-08
元数据中的注释
lg628635
元数据中的注释
{"isbns":["9789812560940","9789812569271","9812560947","9812569278"],"last_page":367,"publisher":"World Scientific Pub Co Inc"}
备用描述
Ch. 1. Introduction to machine learning and software engineering. 1.1. The challenge. 1.2. Overview of machine learning. 1.3. Learning approaches. 1.4. SE tasks for ML applications. 1.5. State-of-the-practice in ML & SE. 1.6. Status. 1.7. Applying ML algorithms to SE tasks. 1.8. Organization of the book -- ch. 2. ML applications in prediction and estimation. 2.1. Bayesian analysis of empirical software engineering cost models, (with S. Chulani, B. Boehm and B. Steece). 2.2. Machine learning approaches to estimating software development effort, (with K. Srinivasan and D. Fisher). 2.3. Estimating software project effort using analogies, (with M. Shepperd and C. Schofield). 2.4. A critique of software defect prediction models, (with N.E. Fenton and M. Neil). 2.5. Using regression trees to classify fault-prone software modules, (with T.M. Khoshgoftaar, E.B. Allen and J. Deng). 2.6. Can genetic programming improve software effort estimation? A comparative evaluation, (with C.J. Burgess and M. Lefley). 2.7. Optimal software release scheduling based on artificial neural networks, (with T. Dohi, Y. Nishio, and S. Osaki) -- ch. 3. ML applications in property and model discovery. 3.1. Identifying objects in procedural programs using clustering neural networks, (with S.K. Abd-El-Hafiz). 3.2. Bayesian-learning based guidelines to determine equivalent mutants, (with A.M.R. Vincenzi, et al.) -- ch. 4. ML applications in transformation. 4.1. Using neural networks to modularize software, (with R. Schwanke and S.J. Hanson) -- ch. 5. ML applications in generation and synthesis. 5.1. Generating software test data by evolution, (with C.C. Michael, G. McGraw and M.A. Schatz) -- ch. 6. ML applications in reuse. 6.1. On the reuse of software : a case-based approach employing a repository, (with P. Katalagarianos and Y. Vassiliou) -- ch. 7. ML applications in requirement acquisition. 7.1. Inductive specification recovery : understanding software by learning from example behaviors, (with W.W. Cohen). 7.2. Explanation-based scenario generation for reactive system models, (with R.J. Hall) -- ch. 8. ML applications in management of development knowledge. 8.1. Case-based knowledge management tools for software development, (with S. Henninger) -- ch. 9. Guidelines and conclusion
备用描述
The challenge of developing and maintaining large software systems in a changing environment has been eloquently spelled out in Brooks' classic paper, No Silver Bullet [20].
开源日期
2011-08-31
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。