nexusstc/Biodegradable Polymeric Materials for Medicinal Applications/ac766ac69452bff27fc803e0fdc99ab0.pdf
Green Composites (Materials Horizons: From Nature to Nanomaterials) 🔍
Sabu Thomas (editor), Preetha Balakrishnan (editor)
Springer Singapore, Imprint: Springer, Green Composites, 2021
英语 [en] · PDF · 22.2MB · 2021 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub · Save
描述
This book presents important developments in green chemistry, with a particular focus on composite materials chemistry. In recent years, natural polymers have generated much interest due to their unique morphology and physical properties. The book gives an introductory overview of green composites, and discusses their emerging interdisciplinary applications in various contemporary fields. The chapters, written by leading experts from industry and academia, cover different aspects of biodegradable green composites and natural polymers including their processing, manufacturing, properties, and applications. This book will be a valuable reference for beginners, researchers as well as industry professionals interested in biodegradable composites.
备用文件名
lgrsnf/2312.pdf
备用文件名
scihub/10.1007/978-981-15-9643-8.pdf
备选标题
Biodegradable Polymeric Materials for Medicinal Applications
备选作者
Sabu Thomas,Preetha Balakrishnan (eds.)
备选作者
Thomas, Sabu; Balakrishnan, Preetha
备选作者
Martina Geisen
备选作者
Sobhi Daniel
备用出版商
Springer Nature Singapore Pte Ltd Fka Springer Science + Business Media Singapore Pte Ltd
备用版本
Materials horizons: from nature to nanomaterials, Singapore, Singapore, 2021
备用版本
Materials Horizons: From Nature to Nanomaterials, 1st ed, Singapore, 2021
备用版本
Springer Nature, Singapore, 2021
备用版本
1st ed. 2021, 2021
元数据中的注释
sci-hub for update
元数据中的注释
{"container_title":"Green Composites","first_page":351,"issns":["2524-5384","2524-5392"],"last_page":372,"parent_isbns":["9789811596421","9789811596438"],"publisher":"Springer"}
元数据中的注释
Referenced by: doi:10.5772/52777 doi:10.5772/56220 doi:10.1002/0471440264 doi:10.1002/polc.5070660127 doi:10.1179/1743284713y.0000000503 doi:10.3390/jfb8040044 doi:10.1016/j.biotechadv.2013.11.009 doi:10.1016/j.ajps.2013.07.021 doi:10.1002/polc.5070660127 doi:10.1039/c8bm00518d doi:10.1016/b978-0-08-100372-5.00013-1 doi:10.1179/1743284713y.0000000472 doi:10.1021/cr040419y doi:10.1002/polb.22259 doi:10.1016/j.bsbt.2015.08.002 doi:10.1515/epoly-2019-0041 doi:10.1016/j.ajps.2013.07.021 doi:10.1016/j.biotechadv.2013.11.009 doi:10.1016/s1359-6446(02)02255-9 doi:10.1016/s1359-6446(02)02255-9 doi:10.1039/c5sm02144h doi:10.1039/c6cs00061d doi:10.5402/2012/762095 doi:10.1007/978-3-642-77563-5_12 doi:10.3109/03639049809082719 doi:10.1016/s0142-9612(00)00115-0 doi:10.1016/s0142-9612(00)00101-0 doi:10.3390/ma8095273 doi:10.1111/j.1151-2916.2000.tb01656.x doi:10.1016/s0142-9612(99)00095-2 doi:10.1002/jbm.a.30279 doi:10.1016/s0142-9612(03)00410-1 doi:10.1016/0079-6700(89)90013-0 doi:10.1080/15321799308021434 doi:10.1002/btm2.10149 doi:10.1073/pnas.1115973108 doi:10.1002/adhm.201500005 doi:10.1002/anie.201604827 doi:10.1002/pat.1625 doi:10.1002/jbm.b.30041 doi:10.1016/j.apcatb.2010.05.017 doi:10.1007/s40204-018-0083-4 doi:10.1155/2015/525832 doi:10.3390/polym12040882 doi:10.1016/j.jare.2018.05.001 doi:10.1016/j.dental.2010.04.008 doi:10.1021/la0511844 doi:10.1016/j.actbio.2010.07.024 doi:10.1016/j.bioactmat.2018.11.003 doi:10.1088/1748-6041/7/1/015001 doi:10.1081/e-ebpp-120051253 doi:10.1586/erc.12.99 doi:10.1098/rsfs.2013.0045 doi:10.1002/app.40533 doi:10.1161/01.res.0000073844.41372.38 doi:10.1155/2015/782653 doi:10.18528/gii150022 doi:10.1016/j.addr.2007.08.041 doi:10.1161/01.res.0000073844.41372.38 doi:10.1080/09506608.2018.1460943 doi:10.22203/ecm.v005a01 doi:10.1016/b978-0-12-370869-4.00007-0 doi:10.1155/2011/2906
备用描述
Preface
Contents
About the Editors
1 Green Composites: Introductory Overview
1 Introduction
2 Types of Green Composites
2.1 Biodegradable Polymer
2.2 Bio-Fiber
2.3 Green Composites
3 Applications
4 Properties
4.1 Mechanical Properties
4.2 Thermal Properties
4.3 Biodegradability
5 Processing
6 Machining and Joining Behavior
7 Conclusions
8 Future Scope
References
2 Green Composite Using Agricultural Waste Reinforcement
1 Introduction
2 Agricultural Waste Composites
2.1 Oil Palm Shell Reinforced Composites
2.2 Palm Oil Clinker Reinforced Composites
2.3 Coconut Shell Reinforced Composites
2.4 Cellulosic Fibres Composites
3 Agricultural Waste-Based Metal Matrix Composites
4 Conclusion
References
3 Green Fiber Thermoplastic Composites
1 Composite Materials
1.1 Thermoplastic Polymers
1.2 Green Fibers
2 Green Fiber Reinforced Thermoplastic Composites
2.1 Mechanical Properties
2.2 Water Absorption Properties
2.3 Thermal Properties
3 Applications
4 Conclusion
References
4 Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites
1 Introduction
2 Processing of Starch-Based Green Composites
2.1 Processing of Starch Matrix Composites
2.2 Processing of Starch Blend Matrix Composites
3 Properties of Starch-Based Green Composites
3.1 Properties of Starch Matrix Composites
3.2 Properties of Starch Blend Matrix Composites
4 Conclusions and Future Perspectives
References
5 Green Composites from Sustainable Cellulose Nanofibrils
1 Cellulose and Nanocellulose
2 Cellulose Nanofibrils (CNFs)
3 Green Composites
4 Experimental Studies
5 Conclusions
References
6 Green Composite as an Adequate Material for Automotive Applications
1 Introduction
2 Natural Fibers Material for the Automotive Industry
2.1 Introduction
2.2 Natural Fibers for a Green Composite
2.3 Classification of Cellulosic Textile Fibers
2.4 Properties of the Textile Fibers
2.5 Natural Fibers Treatments
2.6 Agriculture Waste
3 Application of Natural Fiber Composites
3.1 Application of Textile Material for Sound Absorption in Automobile
3.2 Acoustic Absorption of Natural Fiber Composites (NFC)
3.3 Acoustic Characterization of Natural Fibers Agro-residuals
3.4 Recycled Textile Materials
4 Natural Fiber–Polymer Composites Design for the Automotive Industry
4.1 Introduction
4.2 Natural Fiber Composites for the Automotive Industry
4.3 Natural Fiber–Polymer Composites (NFPC)
4.4 Polymers for NF in the Automotive Composite
4.5 Some Aspects of Natural Fibers Composite Design
4.6 Some Mechanical Properties of NFC
References
7 Development and Characterization of PLA-Based Green Composites: Experimental and Simulation Studies
1 Introduction
2 Characteristics of PLA and Its Composites
3 Modeling of Solid and Shell Composites
4 Composite Preparation and Testing
5 Results and Discussion
6 Comparative Analysis of the Mechanical Properties
7 Conclusions
References
8 Green Hydrogels
1 Introduction
2 History
3 Physical and Chemical Properties
4 Mechanical Properties
5 Porosity and Permeation
6 Applications of Hydrogels
6.1 Diapers
6.2 Perfume Delivery
6.3 Plastic Surgery
6.4 Environmental Applications
6.5 Electrophoresis and Proteomic
6.6 Hydrogels for Tissue Engineering
6.7 Cardiac Applications
6.8 Dental Applications
7 Conclusions
References
9 Green Composites from Renewable Sources
1 Introduction
2 An Insight to Green Composites
2.1 Classification of Fibres
2.2 Extensive Role of Fibre Units
2.3 Polymer Matrices
2.4 Fibre Extraction Procedure
2.5 Pre-treatment of Fibres
2.6 Biopolymers
2.7 Bio-based Thermosetting Materials
2.8 Parameters Impacting Composite Strength
2.9 Rheology and Processing Techniques
2.10 Merits
2.11 Demerits
2.12 Applications
2.13 Moving Towards Environmental Sustainability
2.14 Considerations on Environmental Impact
3 Conclusion
References
10 Recent Trends in the Surface Modification of Natural Fibers for the Preparation of Green Biocomposite
1 Introduction
2 Issues with Natural Fibers
3 Different Surface Treatment Methodologies for Natural Fiber
3.1 Physical Treatment
3.2 Chemical Treatment Methodologies
3.3 Biochemical Treatment (Enzymatic and Fungi)
4 Conclusion
References
11 Lignin Nanoparticles and Their Biodegradable Composites
1 Overview of Natural Bioresources
1.1 Classification of Bioresources
1.2 Agricultural by-Products
2 Overview of Lignin and Lignin Nanoparticles (NPs)
2.1 Lignin
2.2 Lignin Nanoparticles (NPs)
3 Conventional Synthesis Methods of Lignin NPs
3.1 Acid/Alkaline Precipitation Method
3.2 Self-assembly
3.3 Polymerization Followed by Surface Modification
3.4 Compressed CO2 Anti-solvent Strategy
3.5 Chemo-Mechanical Methods
4 Sustainable Synthesis of Lignin NPs
4.1 Microwave-Assisted Strategy
4.2 Ultrasonication
4.3 Biological Methods
4.4 Flash Precipitation
5 Biodegradable Composites
5.1 Lignin Biodegradable Composites
5.2 Lignin NPs Biodegradable Composites
6 Value-Added Applications of Lignin NPs
6.1 Medicine and Pharmaceuticals
6.2 Metallic Nanoparticles Synthesis
6.3 Crosslinking Agent
6.4 Antimicrobial
6.5 Others
7 Industrial Applications
8 Issues and Challenges
9 Future Recommendations
References
12 Recent Trends in Surface Modification of Natural Fibres for Their Use in Green Composites
1 Introduction
2 Chemical Approaches for Surface Modification of Natural Fibres
2.1 Alkaline Treatment
2.2 Silane Treatment
2.3 Acetylation Treatment
2.4 Benzoylation Treatment
2.5 Peroxide Treatment
2.6 Maleated Coupling Agents
2.7 Other Treatments
3 Physical Treatment Modifications
3.1 Plasma Treatment
3.2 Corona Treatment
3.3 Ultraviolet Treatments
3.4 Thermal Treatments
4 The Effect of Surface Modification of Natural Fibres on the Mechanical and Thermal Properties of the Green Composites
4.1 Mechanical Properties
4.2 Thermal Properties
5 Conclusions
References
13 Biodegradable Polymeric Materials for Medicinal Applications
1 Introduction
2 Classification of Biodegradable Polymeric Materials
3 Commonly Used Natural and Synthetic Polymers
4 Mechanisms of Biodegradation in Polymers
4.1 Oxidative Mechanism
4.2 Hydrolysis
4.3 Enzymatic Degradation
5 Design Principles of Biodegradable Polymeric Materials for Medicinal Applications
6 Biomedical Applications of Biodegradable Polymers
7 Drug Delivery Devices
8 Surgical and Orthopedic Devices
9 Wound Dressings
10 Dental Applications
11 Cardiovascular Applications
12 Tissue Engineering Applications
13 Conclusions
References
14 Applications of Biodegradable Green Composites
1 Introduction
2 Applications of Green Composites
2.1 Biomedical Applications
2.2 Food Packaging
2.3 Adsorption Applications
2.4 Electronics
2.5 Construction Applications
2.6 Other Applications
3 Conclusion
References
15 Mechanical Properties of Flax-Cotton Fiber Reinforced Polymer Composites
1 Introduction
2 Materials and Methods
2.1 Materials
2.2 Fabrication Method of the Composite Samples
3 Mechanical Testing of the Composite Samples
4 Results and Discussion
5 Tensile Behavior
6 Flexural Behavior
7 Impact Behavior
8 Conclusion
References
16 Green Composite Film Synthesized from Agricultural Waste for Packaging Applications
1 Introduction
1.1 Agro-waste
1.2 Classification of Agricultural Waste
1.3 Chemical Composition of Agricultural Waste
2 Green Packaging Film Synthesized from Agricultural Waste
3 Some Improving Interfacial Interaction Techniques for Polymer/Agro-waste Composites
3.1 Physical Pretreatment
3.2 Chemical Pretreatment
3.3 Biological Pretreatment
3.4 Physicochemical Pretreatment
4 Various Testing Methods for Analyzing the Characteristics of Green Packaging Film
4.1 Water Vapor Transmission Rate and Water Vapor Permeability
4.2 Tensile Test
4.3 Dart Impact Test
4.4 Contact Angle Test
4.5 Optical Characteristics Test
4.6 Thermal Stability Test
5 Conclusion
References
17 Green Composites for Application in Antistatic Packaging
1 Introduction
1.1 Antistatic Packaging
1.2 Methods to Obtain Polymeric Materials with Antistatic Properties
1.3 Glassy Carbon: A Green Antistatic Agent
1.4 Green Polymer for the Production of Antistatic Packaging
2 Experimental Section: Production of Green Composites for Antistatic Packaging and Properties Analysis
2.1 Obtainment Process of Glassy Carbon, Milling and Structural Characterization
2.2 Processing of Green LDPE/GC Composites
2.3 Processing of PHBV/GC Composites
2.4 Mechanical, Thermal, Electrical, and Biodegradability Tests
3 Results and Discussion
4 Conclusions
References
18 Green Preparation and Environmental Applications of Some Electrospun Fibers
1 Introduction
2 Preparation of Electrospinning Nanocomposite Membrane and Its Adsorption and Degradation of Organic Dyes in Wastewater
2.1 Bioinspired Polydopamine Sheathed Nanofibers Containing Carboxylate Graphene Oxide Nanosheet for High-Efficient Dyes Scavenger
2.2 Preparation of TiO2 Nanoparticles Modified Electrospun Nanocomposite Membranes Toward Efficient Dye Degradation for Wastewater Treatment
2.3 Polydopamine-Coated Electrospun Poly(Vinyl Alcohol)/poly(Acrylic Acid) Membranes as Efficient Dye Adsorbent with Good Recyclability
2.4 Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning
2.5 Self-assembled AgNP-Containing Nanocomposites Constructed by Electrospinning as Efficient Dye Photocatalyst Materials for Wastewater Treatment
3 Preparation of Electrospun Nanofiber and Characterization of Catalytic Performance
3.1 Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries
3.2 Carbon Nanofiber-Supported PdNi Alloy Nanoparticles as Highly Efficient Bifunctional Catalysts for Hydrogen and Oxygen Evolution Reactions
3.3 Preparation of Palladium Nanoparticles Decorated Polyethyleneimine/Polycaprolactone Composite Fibers Constructed by Electrospinning with Highly Efficient and Recyclable Catalytic Performances
4 Hierarchical Electrospun Nanofibers Treated by Solvent Vapor Annealing as Air Filtration Mat for High-Efficiency PM2.5 Capture
5 Conclusions and Remarks
References
19 Green Composites Films with Antibacterial Properties
1 Introduction
2 Green Biopolymers
3 Carbon Nanomaterials
4 Green Alginate-Based Composite Films
4.1 Green Alginate-Based Composite Films
4.2 Green PHBV-Based Composite Films
5 Conclusions
References
20 Green Composites from Medicinal Plants
1 Introduction
1.1 Properties of Composites
1.2 Applications of Composites
1.3 Nanocomposites
2 Experimental Methods
2.1 Synthetic Methods of Nanocomposites
2.2 Green Synthesis of Nanocomposites
2.3 Green Synthetic Procedure
3 Discussion
3.1 Characterization of the Green Composites
3.2 Therapeutical Applications of Green Nanocomposites Synthesized from Medicinal Plants
4 Conclusion
References
21 Green Approaches to Prepare Polymeric Composites for Wastewater Treatment
1 Introduction
2 Green Composites—Promising and Sustainable Alternatives for Wastewater Treatment
3 Various Polymers-Based Green Composites for Wastewater Treatment
4 Why Chitosan in Wastewater Treatment?
5 Preparation of Chitosan-Based Green Composites (CGCs)
5.1 Chitosan–Cellulose Acetate Composites
5.2 Chitosan-Calcium Alginate Composites
5.3 Chitosan-Clay Composites
5.4 Hydroxyapatite–Chitosan Composites
6 Removal of Heavy Metals from Industrial Wastewater Using CGCs
7 Removal of Dyes from Industrial Wastewater Using CGCs
8 Conclusions and Future Directions
References
22 Molecular Imprinted Nanocomposites for Green Chemistry
1 Nanocomposites
2 Green Chemistry
3 Molecular Imprinting in Green Chemistry
4 Green Nanocomposite Materials
4.1 Cellulose-Based Nanocomposite
5 Polymeric-Based Nanocomposite
6 Carbon Nanotube-Based Nanocomposites
7 Quantum Dots-Based Nanocomposite
7.1 Carbon Quantum Dots-Based Nanocomposite
7.2 Graphene Quantum Dots-Based Nanocomposite
8 Conclusion
References
23 Review of Chemical Treatments of Natural Fibers: A Novel Plastination Approach
1 Introduction
2 Background
2.1 Structure and Chemical Composition
2.2 Interfacial Adhesion
2.3 Moisture Absorption Properties
2.4 Microbial Attack
2.5 Flammability
3 Chemical Treatments
3.1 Alkaline
3.2 Acetylation
3.3 Maleated Coupling Agents
3.4 Plastination: A New Approach
4 Outlook and Conclusions
References
Contents
About the Editors
1 Green Composites: Introductory Overview
1 Introduction
2 Types of Green Composites
2.1 Biodegradable Polymer
2.2 Bio-Fiber
2.3 Green Composites
3 Applications
4 Properties
4.1 Mechanical Properties
4.2 Thermal Properties
4.3 Biodegradability
5 Processing
6 Machining and Joining Behavior
7 Conclusions
8 Future Scope
References
2 Green Composite Using Agricultural Waste Reinforcement
1 Introduction
2 Agricultural Waste Composites
2.1 Oil Palm Shell Reinforced Composites
2.2 Palm Oil Clinker Reinforced Composites
2.3 Coconut Shell Reinforced Composites
2.4 Cellulosic Fibres Composites
3 Agricultural Waste-Based Metal Matrix Composites
4 Conclusion
References
3 Green Fiber Thermoplastic Composites
1 Composite Materials
1.1 Thermoplastic Polymers
1.2 Green Fibers
2 Green Fiber Reinforced Thermoplastic Composites
2.1 Mechanical Properties
2.2 Water Absorption Properties
2.3 Thermal Properties
3 Applications
4 Conclusion
References
4 Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites
1 Introduction
2 Processing of Starch-Based Green Composites
2.1 Processing of Starch Matrix Composites
2.2 Processing of Starch Blend Matrix Composites
3 Properties of Starch-Based Green Composites
3.1 Properties of Starch Matrix Composites
3.2 Properties of Starch Blend Matrix Composites
4 Conclusions and Future Perspectives
References
5 Green Composites from Sustainable Cellulose Nanofibrils
1 Cellulose and Nanocellulose
2 Cellulose Nanofibrils (CNFs)
3 Green Composites
4 Experimental Studies
5 Conclusions
References
6 Green Composite as an Adequate Material for Automotive Applications
1 Introduction
2 Natural Fibers Material for the Automotive Industry
2.1 Introduction
2.2 Natural Fibers for a Green Composite
2.3 Classification of Cellulosic Textile Fibers
2.4 Properties of the Textile Fibers
2.5 Natural Fibers Treatments
2.6 Agriculture Waste
3 Application of Natural Fiber Composites
3.1 Application of Textile Material for Sound Absorption in Automobile
3.2 Acoustic Absorption of Natural Fiber Composites (NFC)
3.3 Acoustic Characterization of Natural Fibers Agro-residuals
3.4 Recycled Textile Materials
4 Natural Fiber–Polymer Composites Design for the Automotive Industry
4.1 Introduction
4.2 Natural Fiber Composites for the Automotive Industry
4.3 Natural Fiber–Polymer Composites (NFPC)
4.4 Polymers for NF in the Automotive Composite
4.5 Some Aspects of Natural Fibers Composite Design
4.6 Some Mechanical Properties of NFC
References
7 Development and Characterization of PLA-Based Green Composites: Experimental and Simulation Studies
1 Introduction
2 Characteristics of PLA and Its Composites
3 Modeling of Solid and Shell Composites
4 Composite Preparation and Testing
5 Results and Discussion
6 Comparative Analysis of the Mechanical Properties
7 Conclusions
References
8 Green Hydrogels
1 Introduction
2 History
3 Physical and Chemical Properties
4 Mechanical Properties
5 Porosity and Permeation
6 Applications of Hydrogels
6.1 Diapers
6.2 Perfume Delivery
6.3 Plastic Surgery
6.4 Environmental Applications
6.5 Electrophoresis and Proteomic
6.6 Hydrogels for Tissue Engineering
6.7 Cardiac Applications
6.8 Dental Applications
7 Conclusions
References
9 Green Composites from Renewable Sources
1 Introduction
2 An Insight to Green Composites
2.1 Classification of Fibres
2.2 Extensive Role of Fibre Units
2.3 Polymer Matrices
2.4 Fibre Extraction Procedure
2.5 Pre-treatment of Fibres
2.6 Biopolymers
2.7 Bio-based Thermosetting Materials
2.8 Parameters Impacting Composite Strength
2.9 Rheology and Processing Techniques
2.10 Merits
2.11 Demerits
2.12 Applications
2.13 Moving Towards Environmental Sustainability
2.14 Considerations on Environmental Impact
3 Conclusion
References
10 Recent Trends in the Surface Modification of Natural Fibers for the Preparation of Green Biocomposite
1 Introduction
2 Issues with Natural Fibers
3 Different Surface Treatment Methodologies for Natural Fiber
3.1 Physical Treatment
3.2 Chemical Treatment Methodologies
3.3 Biochemical Treatment (Enzymatic and Fungi)
4 Conclusion
References
11 Lignin Nanoparticles and Their Biodegradable Composites
1 Overview of Natural Bioresources
1.1 Classification of Bioresources
1.2 Agricultural by-Products
2 Overview of Lignin and Lignin Nanoparticles (NPs)
2.1 Lignin
2.2 Lignin Nanoparticles (NPs)
3 Conventional Synthesis Methods of Lignin NPs
3.1 Acid/Alkaline Precipitation Method
3.2 Self-assembly
3.3 Polymerization Followed by Surface Modification
3.4 Compressed CO2 Anti-solvent Strategy
3.5 Chemo-Mechanical Methods
4 Sustainable Synthesis of Lignin NPs
4.1 Microwave-Assisted Strategy
4.2 Ultrasonication
4.3 Biological Methods
4.4 Flash Precipitation
5 Biodegradable Composites
5.1 Lignin Biodegradable Composites
5.2 Lignin NPs Biodegradable Composites
6 Value-Added Applications of Lignin NPs
6.1 Medicine and Pharmaceuticals
6.2 Metallic Nanoparticles Synthesis
6.3 Crosslinking Agent
6.4 Antimicrobial
6.5 Others
7 Industrial Applications
8 Issues and Challenges
9 Future Recommendations
References
12 Recent Trends in Surface Modification of Natural Fibres for Their Use in Green Composites
1 Introduction
2 Chemical Approaches for Surface Modification of Natural Fibres
2.1 Alkaline Treatment
2.2 Silane Treatment
2.3 Acetylation Treatment
2.4 Benzoylation Treatment
2.5 Peroxide Treatment
2.6 Maleated Coupling Agents
2.7 Other Treatments
3 Physical Treatment Modifications
3.1 Plasma Treatment
3.2 Corona Treatment
3.3 Ultraviolet Treatments
3.4 Thermal Treatments
4 The Effect of Surface Modification of Natural Fibres on the Mechanical and Thermal Properties of the Green Composites
4.1 Mechanical Properties
4.2 Thermal Properties
5 Conclusions
References
13 Biodegradable Polymeric Materials for Medicinal Applications
1 Introduction
2 Classification of Biodegradable Polymeric Materials
3 Commonly Used Natural and Synthetic Polymers
4 Mechanisms of Biodegradation in Polymers
4.1 Oxidative Mechanism
4.2 Hydrolysis
4.3 Enzymatic Degradation
5 Design Principles of Biodegradable Polymeric Materials for Medicinal Applications
6 Biomedical Applications of Biodegradable Polymers
7 Drug Delivery Devices
8 Surgical and Orthopedic Devices
9 Wound Dressings
10 Dental Applications
11 Cardiovascular Applications
12 Tissue Engineering Applications
13 Conclusions
References
14 Applications of Biodegradable Green Composites
1 Introduction
2 Applications of Green Composites
2.1 Biomedical Applications
2.2 Food Packaging
2.3 Adsorption Applications
2.4 Electronics
2.5 Construction Applications
2.6 Other Applications
3 Conclusion
References
15 Mechanical Properties of Flax-Cotton Fiber Reinforced Polymer Composites
1 Introduction
2 Materials and Methods
2.1 Materials
2.2 Fabrication Method of the Composite Samples
3 Mechanical Testing of the Composite Samples
4 Results and Discussion
5 Tensile Behavior
6 Flexural Behavior
7 Impact Behavior
8 Conclusion
References
16 Green Composite Film Synthesized from Agricultural Waste for Packaging Applications
1 Introduction
1.1 Agro-waste
1.2 Classification of Agricultural Waste
1.3 Chemical Composition of Agricultural Waste
2 Green Packaging Film Synthesized from Agricultural Waste
3 Some Improving Interfacial Interaction Techniques for Polymer/Agro-waste Composites
3.1 Physical Pretreatment
3.2 Chemical Pretreatment
3.3 Biological Pretreatment
3.4 Physicochemical Pretreatment
4 Various Testing Methods for Analyzing the Characteristics of Green Packaging Film
4.1 Water Vapor Transmission Rate and Water Vapor Permeability
4.2 Tensile Test
4.3 Dart Impact Test
4.4 Contact Angle Test
4.5 Optical Characteristics Test
4.6 Thermal Stability Test
5 Conclusion
References
17 Green Composites for Application in Antistatic Packaging
1 Introduction
1.1 Antistatic Packaging
1.2 Methods to Obtain Polymeric Materials with Antistatic Properties
1.3 Glassy Carbon: A Green Antistatic Agent
1.4 Green Polymer for the Production of Antistatic Packaging
2 Experimental Section: Production of Green Composites for Antistatic Packaging and Properties Analysis
2.1 Obtainment Process of Glassy Carbon, Milling and Structural Characterization
2.2 Processing of Green LDPE/GC Composites
2.3 Processing of PHBV/GC Composites
2.4 Mechanical, Thermal, Electrical, and Biodegradability Tests
3 Results and Discussion
4 Conclusions
References
18 Green Preparation and Environmental Applications of Some Electrospun Fibers
1 Introduction
2 Preparation of Electrospinning Nanocomposite Membrane and Its Adsorption and Degradation of Organic Dyes in Wastewater
2.1 Bioinspired Polydopamine Sheathed Nanofibers Containing Carboxylate Graphene Oxide Nanosheet for High-Efficient Dyes Scavenger
2.2 Preparation of TiO2 Nanoparticles Modified Electrospun Nanocomposite Membranes Toward Efficient Dye Degradation for Wastewater Treatment
2.3 Polydopamine-Coated Electrospun Poly(Vinyl Alcohol)/poly(Acrylic Acid) Membranes as Efficient Dye Adsorbent with Good Recyclability
2.4 Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning
2.5 Self-assembled AgNP-Containing Nanocomposites Constructed by Electrospinning as Efficient Dye Photocatalyst Materials for Wastewater Treatment
3 Preparation of Electrospun Nanofiber and Characterization of Catalytic Performance
3.1 Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries
3.2 Carbon Nanofiber-Supported PdNi Alloy Nanoparticles as Highly Efficient Bifunctional Catalysts for Hydrogen and Oxygen Evolution Reactions
3.3 Preparation of Palladium Nanoparticles Decorated Polyethyleneimine/Polycaprolactone Composite Fibers Constructed by Electrospinning with Highly Efficient and Recyclable Catalytic Performances
4 Hierarchical Electrospun Nanofibers Treated by Solvent Vapor Annealing as Air Filtration Mat for High-Efficiency PM2.5 Capture
5 Conclusions and Remarks
References
19 Green Composites Films with Antibacterial Properties
1 Introduction
2 Green Biopolymers
3 Carbon Nanomaterials
4 Green Alginate-Based Composite Films
4.1 Green Alginate-Based Composite Films
4.2 Green PHBV-Based Composite Films
5 Conclusions
References
20 Green Composites from Medicinal Plants
1 Introduction
1.1 Properties of Composites
1.2 Applications of Composites
1.3 Nanocomposites
2 Experimental Methods
2.1 Synthetic Methods of Nanocomposites
2.2 Green Synthesis of Nanocomposites
2.3 Green Synthetic Procedure
3 Discussion
3.1 Characterization of the Green Composites
3.2 Therapeutical Applications of Green Nanocomposites Synthesized from Medicinal Plants
4 Conclusion
References
21 Green Approaches to Prepare Polymeric Composites for Wastewater Treatment
1 Introduction
2 Green Composites—Promising and Sustainable Alternatives for Wastewater Treatment
3 Various Polymers-Based Green Composites for Wastewater Treatment
4 Why Chitosan in Wastewater Treatment?
5 Preparation of Chitosan-Based Green Composites (CGCs)
5.1 Chitosan–Cellulose Acetate Composites
5.2 Chitosan-Calcium Alginate Composites
5.3 Chitosan-Clay Composites
5.4 Hydroxyapatite–Chitosan Composites
6 Removal of Heavy Metals from Industrial Wastewater Using CGCs
7 Removal of Dyes from Industrial Wastewater Using CGCs
8 Conclusions and Future Directions
References
22 Molecular Imprinted Nanocomposites for Green Chemistry
1 Nanocomposites
2 Green Chemistry
3 Molecular Imprinting in Green Chemistry
4 Green Nanocomposite Materials
4.1 Cellulose-Based Nanocomposite
5 Polymeric-Based Nanocomposite
6 Carbon Nanotube-Based Nanocomposites
7 Quantum Dots-Based Nanocomposite
7.1 Carbon Quantum Dots-Based Nanocomposite
7.2 Graphene Quantum Dots-Based Nanocomposite
8 Conclusion
References
23 Review of Chemical Treatments of Natural Fibers: A Novel Plastination Approach
1 Introduction
2 Background
2.1 Structure and Chemical Composition
2.2 Interfacial Adhesion
2.3 Moisture Absorption Properties
2.4 Microbial Attack
2.5 Flammability
3 Chemical Treatments
3.1 Alkaline
3.2 Acetylation
3.3 Maleated Coupling Agents
3.4 Plastination: A New Approach
4 Outlook and Conclusions
References
开源日期
2021-10-06
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
- 高速服务器(合作方提供) #1 (推荐)
- 高速服务器(合作方提供) #2 (推荐)
- 高速服务器(合作方提供) #3 (推荐)
- 高速服务器(合作方提供) #4 (推荐)
- 高速服务器(合作方提供) #5 (推荐)
- 高速服务器(合作方提供) #6 (推荐)
- 高速服务器(合作方提供) #7
- 高速服务器(合作方提供) #8
- 高速服务器(合作方提供) #9
- 高速服务器(合作方提供) #10
- 高速服务器(合作方提供) #11
- 高速服务器(合作方提供) #12
- 高速服务器(合作方提供) #13
- 高速服务器(合作方提供) #14
- 高速服务器(合作方提供) #15
- 高速服务器(合作方提供) #16
- 高速服务器(合作方提供) #17
- 高速服务器(合作方提供) #18
- 高速服务器(合作方提供) #19
- 高速服务器(合作方提供) #20
- 高速服务器(合作方提供) #21
- 高速服务器(合作方提供) #22
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #10 (稍快但需要排队)
- 低速服务器(合作方提供) #11 (稍快但需要排队)
- 低速服务器(合作方提供) #12 (稍快但需要排队)
- 低速服务器(合作方提供) #13 (稍快但需要排队)
- 低速服务器(合作方提供) #14 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #15 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #16 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #17 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #18 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.