A Survey of Knot Theory 🔍
Akio Kawauchi (auth.) Birkhäuser Basel, 1, 1995
英语 [en] · PDF · 14.0MB · 1995 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
Knot theory is a rapidly developing field of research with many applications not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of knot theory from its very beginnings to today's most recent research results. The topics include Alexander polynomials, Jones type polynomials, and Vassiliev invariants. With its appendix containing many useful tables and an extended list of references with over 3,500 entries it is an indispensable book for everyone concerned with knot theory. The book can serve as an introduction to the field for advanced undergraduate and graduate students. Also researchers working in outside areas such as theoretical physics or molecular biology will benefit from this thorough study which is complemented by many exercises and examples.
备用文件名
lgrsnf/A:\compressed\10.1007%2F978-3-0348-9227-8.pdf
备用文件名
nexusstc/A Survey of Knot Theory/a4f723473f213b2815f7edf47b282b25.pdf
备用文件名
zlib/Mathematics/Akio Kawauchi (auth.)/A Survey of Knot Theory_2129318.pdf
备选作者
Akio Kawauchi, David W. Kingsbury
备选作者
Kawauchi, Akio
备用出版商
Springer Nature Switzerland AG
备用出版商
Birkhäuser; Brand: Birkhäuser
备用出版商
Birkhauser Verlag
备用出版商
Springer Basel
备用版本
Springer Nature, Basel, 2012
备用版本
Switzerland, Switzerland
备用版本
Sep 27, 2011
备用版本
Basel, 1996
备用版本
Basel, 1995
备用版本
1996, 2011
备用版本
1, 1996
元数据中的注释
lg975398
元数据中的注释
{"edition":"1","isbns":["3034892276","303489953X","9783034892278","9783034899536"],"last_page":423,"publisher":"Birkhäuser Basel"}
备用描述
Front Matter....Pages i-xxi
Fundamentals of knot theory....Pages 1-6
Presentations....Pages 7-19
Standard examples....Pages 21-29
Compositions and decompositions....Pages 31-45
Seifert surfaces I: a topological approach....Pages 47-60
Seifert surfaces II: an algebraic approach....Pages 61-72
The fundamental group....Pages 73-86
Multi-variable Alexander polynomials....Pages 87-98
Jones type polynomials I: a topological approach....Pages 99-112
Jones type polynomials II: an algebraic approach....Pages 113-119
Symmetries....Pages 121-140
Local transformations....Pages 141-153
Cobordisms....Pages 155-169
Two-knots I: a topological approach....Pages 171-187
Two-knots II: an algebraic approach....Pages 189-200
Knot theory of spatial graphs....Pages 201-208
Vassiliev-Gusarov invariants....Pages 209-219
Back Matter....Pages 221-420
备用描述
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.<br>
备用描述
Keine Beschreibung vorhanden.
Erscheinungsdatum: 27.09.2011
开源日期
2013-08-01
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。