Symmetry in Geometry and Analysis, Volume 3: Festschrift in Honor of Toshiyuki Kobayashi (Progress in Mathematics, 359) 🔍
Michael Pevzner (editor), Hideko Sekiguchi (editor)
Birkhäuser, 2024, 2025
英语 [en] · PDF · 7.9MB · 2025 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
Symmetry in Geometry and Analysis is a Festschrift honoring Toshiyuki Kobayashi. The three volumes feature 35 selected contributions from invited speakers of twin conferences held in June 2022 in Reims, France, and in September 2022 in Tokyo, Japan. These contributions highlight the profound impact of Prof. Kobayashi’s pioneering ideas, groundbreaking discoveries, and significant achievements in the development of analytic representation theory, noncommutative harmonic analysis, and the geometry of discontinuous groups beyond the Riemannian context, among other areas, over the past four decades.
This third volume of the Festschrift contains original articles on branching problems in representation theory of reductive Lie groups and related topics.
Contributions are by Ali Baklouti, Hidenori Fujiwara, Dmitry Gourevitch, Masatoshi Kitagawa, Salma Nasrin, Yoshiki Oshima, and Petr Somberg.
This third volume of the Festschrift contains original articles on branching problems in representation theory of reductive Lie groups and related topics.
Contributions are by Ali Baklouti, Hidenori Fujiwara, Dmitry Gourevitch, Masatoshi Kitagawa, Salma Nasrin, Yoshiki Oshima, and Petr Somberg.
备用文件名
lgrsnf/Pevzner2025c.pdf
备用出版商
Springer Basel AG
备用出版商
SPRINGER NATURE
备用版本
S.l, 2024
备用描述
Contents
Contents of Volume 1
Contents of Volume 2
A Solution to Duflo's Polynomial Problem for Nilpotent Lie Groups Restricted Representations
1 Introduction
2 Backgrounds and Notations
2.1 Saturation of Coadjoint Orbits
2.2 Saturation with Respect to a Normal Subgroup of Codimension 1
2.3 Orbit Layers and Kernels
2.4 Corwin-Greenleaf e-Central Elements
3 Generating Families of C(π|K) and Z(C[Ω]K)
4 Duflo's Polynomial Problem
4.1 Case of Finite Multiplicity Restrictions
4.2 The General Case
References
Multiplicities and Associated Varieties in Representation Theory of Reductive Groups
1 Introduction
1.1 Notation
2 Finite Multiplicities Beyond Spherical Pairs
2.1 Homogeneous Case
2.2 Branching Problems
2.3 Related Results
2.4 Twisted Case
2.5 Symplectic Sphericity
2.6 Open Questions
2.6.1 Geometric Questions
3 Sufficient Conditions for Vanishing
4 Non-Archimedean Case
5 Bibliographic Note
References
Kobayashi's Conjectures on the Discrete Decomposability
1 Introduction
1.1 Notation and Convention
2 Preliminaries
2.1 Compact Operator
2.2 Continuous Representation and Smooth Vectors
2.3 (g, K)-Module
2.4 Infinitesimal Character
2.5 Moderate Growth and Rapid Decrease
2.6 Null Cone
3 Growth and Infinitesimal Character
3.1 Heat Kernel
3.2 Estimate of Infinitesimal Characters
4 Discrete Decomposability
4.1 Discrete Decomposability
4.2 Non-compact Center and Algebraicity
4.3 Z(g)-Action
5 H to Hinfty
5.1 Existence of Irreducible Quotient
5.2 Compactness and Discrete Decomposability
5.3 Smoothness and Discrete Decomposability
5.4 Unitary to Algebraic
6 Wave Front Set and Hinfty
6.1 Wave Front Set and Estimate
6.2 Wave Front Set of a Representation
6.3 Wave Front Set and Discrete Decomposability
6.4 Nonreductive Case
7 Criteria for the Discrete Decomposability
7.1 Associated Variety
7.2 Asymptotic K-Support
7.3 Sekiguchi–Kostant Correspondence
7.4 Finite Orbits and Admissibility
References
Kobayashi's Multiplicity-One Theorems in Branching Laws and Orbit Philosophy Beyond Tempered Representations
1 Introduction
2 Kobayashi's ABC Program on Branching Problems
2.1 General Results in Stage A: Pioneered by Kobayashi
2.2 Bounded Multiplicity Condition for the Restriction O(p,q)↓O(p1,q1)×O(p2,q2)
2.3 Restriction of ``Small'' πIrr(G) to Reductive Subgroups
2.4 Specific Results in Stage A
3 Orbit Philosophy
3.1 Geometric Quantization and the Classical Limit
3.2 Functorial Property for Geometric Quantization
3.3 [Q, R] = 0 for Reductive Lie Groups in the Non-compact Setting
3.4 Elliptic Orbit and Its Quantization
3.5 [Q, R] = 0 for Holomorphic Discrete Series Representations
4 Discrete Series Representations
4.1 Generalized Hyperboloid O(p,q)/O(p-1,q)
4.2 Parameterization of Elliptic Coadjoint Orbits that Meet h
4.3 Geometric Quantization of Elliptic Coadjoint Orbits
5 Statement of Main Results
5.1 What Will Be the Counterpart of Kobayashi's Theorems in the Geometry of Coadjoint Orbits?
5.2 Coadjoint Geometry Corresponding to Kobayashi's Uniformly Bounded Multiplicity Theorem
5.3 O(p,q)↓O(p1,q1)×O(p2,q2)
5.4 G=O(p,q)G' = G1 ×G2 = O(p1, q1)×O(p2, q2)
5.5 Discrete Decomposability and Coadjoint Orbits
5.6 Explicit Branching Laws and Coadjoint Orbits
References
Discrete Branching Laws of Derived Functor Modules
1 Introduction
2 Cohomological Induction
3 Discretely Decomposable (g,K)-Modules
4 Localization of Cohomological Induction
5 Decomposition of Aq(λ)
6 Setting-up and Outline for Branching Laws
7 Branching Laws for Isolated Type
7.1 su(2m,2n)↓sp(m,n)
7.1.1
7.1.2
7.1.3
7.1.4
7.2 so(2m+1,2n)↓so(2m+1,k)⊕so(2n-k)
7.3 so(2m+1,2n+1)↓so(2m+1,k)⊕so(2n-k+1)
7.4 so(2m,2n)↓u(m,n)
7.5 so*(2n)↓so*(2n-2)⊕so(2)
7.6 so*(2n)↓u(n-1,1)
7.7 sp(m,n)↓sp(k,l)⊕sp(m-k,n-l)
7.8 sl(2n,C)↓sp(n,C)
7.9 sl(2n,C)↓su*(2n)⊕R
7.10 so(2n,C)↓so(2n-1,C)
7.11 so(2n,C)↓so(2n-1,1)
7.12 f4(-20)↓so(8,1)
7.12.1
7.12.2
7.13 e6(2)↓so*(10)⊕so(2)
7.14 e6(-14)↓so(8,2)⊕so(2)
7.15 e6(-14)↓f4(-20)
7.15.1
7.15.2
7.15.3
7.16 e7(-5)↓e6(-14)⊕so(2)
8 Branching Laws for Non-holomorphic Discrete Series Type
8.1 u(m,n)↓u(m,k)⊕u(n-k)
8.1.1
8.1.2
8.1.3
8.2 so(2m,n)↓so(2m,k)⊕so(n-k)
8.2.1
8.2.2
8.2.3
8.3 sp(m,n)↓sp(m,k)⊕sp(n-k)
8.3.1
8.3.2
8.3.3
8.4 sp(m,n)↓sp(m,k)⊕sp(n-k) (Isolated Type)
8.5 su(2,2n)↓sp(1,n)
8.6 so(4,2n)↓u(2,n)
8.6.1
8.6.2
8.7 f4(4)↓sp(1,2)⊕su(2)
8.8 f4(4)↓so(4,5)
8.8.1
8.8.2
8.9 e6(2)↓so(4,6)⊕so(2)
8.9.1
8.9.2
8.9.3
8.10 e6(2)↓su(2,4)⊕su(2)
8.11 e6(2)↓sp(1,3)
8.12 e6(2)↓f4(4)
8.12.1
8.12.2
8.12.3
8.12.4
8.13 e7(-5)↓so(4,8)⊕su(2)
8.14 e7(-5)↓su(2,6)
8.15 e7(-5)↓e6(2)⊕so(2)
8.15.1
8.15.2
8.15.3
8.16 e8(-24)↓so(4,12)
8.17 e8(-24)↓e7(-5)⊕su(2)
9 Branching Laws for Holomorphic Type
9.1 u(m,n)↓u(k,l)⊕u(m-k,n-l)
9.1.1
9.1.2
9.2 u(n,n)↓so*(2n)
9.3 u(n,n)↓sp(n,R)
9.4 so(2,n)↓so(2,k)⊕so(n-k)
9.5 so(2,2n)↓u(1,n)
9.5.1
9.5.2
9.6 so*(2n)↓u(m,n-m)
9.6.1
9.6.2
9.7 so*(2n)↓so*(2m)⊕so*(2n-2m)
9.7.1
9.7.2
9.7.3
9.8 sp(n,R)↓u(m,n-m)
9.9 sp(n,R)↓sp(m,R)⊕sp(n-m,R)
9.9.1
9.9.2
9.10 e6(-14)↓so(2,8)⊕so(2)
9.10.1
9.10.2
9.10.3
9.11 e6(-14)↓su(2,4)⊕su(2)
9.12 e6(-14)↓so*(10)⊕so(2)
9.12.1
9.12.2
9.12.3
9.13 e6(-14)↓su(1,5)⊕sl(2,R)
9.14 e7(-25)↓e6(-14)⊕so(2)
9.14.1
9.14.2
9.15 e7(-25)↓so(2,10)⊕sl(2,R)
9.16 e7(-25)↓su(6,2)
9.17 e7(-25)↓so*(12)⊕su(2)
10 Tensor Product of Holomorphic Representations
10.1 Tensor Product for u(m,n)
10.1.1
10.1.2
10.2 Tensor Product for so(2,2n+1)
10.3 Tensor Product for so(2,2n)
10.3.1
10.3.2
10.4 Tensor Product for so*(2n)
10.4.1
10.4.2
10.4.3
10.4.4
10.5 Tensor Product for sp(n,R)
10.5.1
10.5.2
10.6 Tensor Product for e6(-14)
10.6.1
10.6.2
10.6.3
10.7 Tensor Product for e7(-25)
11 Orbit Decomposition of Partial Flag Varieties
11.1 (GL(m+n),GL(m)×GL(n))
11.1.1
11.1.2
11.1.3
11.2 (GL(2n),Sp(n))
11.3 (SO(2m+2n),SO(2m)×SO(2n))
11.3.1
11.3.2
11.3.3
11.3.4
11.4 (SO(2m+2n),SO(2m+1)×SO(2n-1))
11.4.1
11.4.2
11.5 (SO(2n+1),SO(2n))
11.6 (SO(2n),GL(n))
11.6.1
11.6.2
11.6.3
11.7 (Sp(m+n),Sp(m)×Sp(n))
11.7.1
11.7.2
11.8 (E6, Spin (10)×SO(2))
11.9 (E6,SL(6)×Sp(1))
12 Formulas of Finite-Dimensional Representations
13 Some Equations of (g,K)-Modules
13.1 u(m,n) (Holomorphic)
13.2 so(2,2n)
13.3 so(2,2n-1)
13.4 so*(2n)
13.5 sp(n,R)
13.6 u(m,n) (Non-holomorphic)
13.7 so(2m,n)
13.8 sp(m,n)
13.9 Dual Pair Correspondence
References
Rankin-Cohen Brackets for Orthogonal Lie Algebras and Bilinear Conformally Equivariant Differential Operators
1 Introduction and Motivation
2 F-Method and Diagonal Branching Problem for Generalized Verma Modules
3 The Construction of Singular Vectors for Diagonal Branching Rules Applied to Scalar Generalized Verma Modules for so(n+1,1,R)
3.1 Description of the Representation
3.2 Reduction to Scalar Differential Equation in Two Variables
3.3 Polynomial Solutions of the Differential Equation in Two Variables Produced by the F-Method
4 Application: The Classification of Bilinear Conformally Equivariant Differential Operators on Line Bundles
References
Contents of Volume 1
Contents of Volume 2
A Solution to Duflo's Polynomial Problem for Nilpotent Lie Groups Restricted Representations
1 Introduction
2 Backgrounds and Notations
2.1 Saturation of Coadjoint Orbits
2.2 Saturation with Respect to a Normal Subgroup of Codimension 1
2.3 Orbit Layers and Kernels
2.4 Corwin-Greenleaf e-Central Elements
3 Generating Families of C(π|K) and Z(C[Ω]K)
4 Duflo's Polynomial Problem
4.1 Case of Finite Multiplicity Restrictions
4.2 The General Case
References
Multiplicities and Associated Varieties in Representation Theory of Reductive Groups
1 Introduction
1.1 Notation
2 Finite Multiplicities Beyond Spherical Pairs
2.1 Homogeneous Case
2.2 Branching Problems
2.3 Related Results
2.4 Twisted Case
2.5 Symplectic Sphericity
2.6 Open Questions
2.6.1 Geometric Questions
3 Sufficient Conditions for Vanishing
4 Non-Archimedean Case
5 Bibliographic Note
References
Kobayashi's Conjectures on the Discrete Decomposability
1 Introduction
1.1 Notation and Convention
2 Preliminaries
2.1 Compact Operator
2.2 Continuous Representation and Smooth Vectors
2.3 (g, K)-Module
2.4 Infinitesimal Character
2.5 Moderate Growth and Rapid Decrease
2.6 Null Cone
3 Growth and Infinitesimal Character
3.1 Heat Kernel
3.2 Estimate of Infinitesimal Characters
4 Discrete Decomposability
4.1 Discrete Decomposability
4.2 Non-compact Center and Algebraicity
4.3 Z(g)-Action
5 H to Hinfty
5.1 Existence of Irreducible Quotient
5.2 Compactness and Discrete Decomposability
5.3 Smoothness and Discrete Decomposability
5.4 Unitary to Algebraic
6 Wave Front Set and Hinfty
6.1 Wave Front Set and Estimate
6.2 Wave Front Set of a Representation
6.3 Wave Front Set and Discrete Decomposability
6.4 Nonreductive Case
7 Criteria for the Discrete Decomposability
7.1 Associated Variety
7.2 Asymptotic K-Support
7.3 Sekiguchi–Kostant Correspondence
7.4 Finite Orbits and Admissibility
References
Kobayashi's Multiplicity-One Theorems in Branching Laws and Orbit Philosophy Beyond Tempered Representations
1 Introduction
2 Kobayashi's ABC Program on Branching Problems
2.1 General Results in Stage A: Pioneered by Kobayashi
2.2 Bounded Multiplicity Condition for the Restriction O(p,q)↓O(p1,q1)×O(p2,q2)
2.3 Restriction of ``Small'' πIrr(G) to Reductive Subgroups
2.4 Specific Results in Stage A
3 Orbit Philosophy
3.1 Geometric Quantization and the Classical Limit
3.2 Functorial Property for Geometric Quantization
3.3 [Q, R] = 0 for Reductive Lie Groups in the Non-compact Setting
3.4 Elliptic Orbit and Its Quantization
3.5 [Q, R] = 0 for Holomorphic Discrete Series Representations
4 Discrete Series Representations
4.1 Generalized Hyperboloid O(p,q)/O(p-1,q)
4.2 Parameterization of Elliptic Coadjoint Orbits that Meet h
4.3 Geometric Quantization of Elliptic Coadjoint Orbits
5 Statement of Main Results
5.1 What Will Be the Counterpart of Kobayashi's Theorems in the Geometry of Coadjoint Orbits?
5.2 Coadjoint Geometry Corresponding to Kobayashi's Uniformly Bounded Multiplicity Theorem
5.3 O(p,q)↓O(p1,q1)×O(p2,q2)
5.4 G=O(p,q)G' = G1 ×G2 = O(p1, q1)×O(p2, q2)
5.5 Discrete Decomposability and Coadjoint Orbits
5.6 Explicit Branching Laws and Coadjoint Orbits
References
Discrete Branching Laws of Derived Functor Modules
1 Introduction
2 Cohomological Induction
3 Discretely Decomposable (g,K)-Modules
4 Localization of Cohomological Induction
5 Decomposition of Aq(λ)
6 Setting-up and Outline for Branching Laws
7 Branching Laws for Isolated Type
7.1 su(2m,2n)↓sp(m,n)
7.1.1
7.1.2
7.1.3
7.1.4
7.2 so(2m+1,2n)↓so(2m+1,k)⊕so(2n-k)
7.3 so(2m+1,2n+1)↓so(2m+1,k)⊕so(2n-k+1)
7.4 so(2m,2n)↓u(m,n)
7.5 so*(2n)↓so*(2n-2)⊕so(2)
7.6 so*(2n)↓u(n-1,1)
7.7 sp(m,n)↓sp(k,l)⊕sp(m-k,n-l)
7.8 sl(2n,C)↓sp(n,C)
7.9 sl(2n,C)↓su*(2n)⊕R
7.10 so(2n,C)↓so(2n-1,C)
7.11 so(2n,C)↓so(2n-1,1)
7.12 f4(-20)↓so(8,1)
7.12.1
7.12.2
7.13 e6(2)↓so*(10)⊕so(2)
7.14 e6(-14)↓so(8,2)⊕so(2)
7.15 e6(-14)↓f4(-20)
7.15.1
7.15.2
7.15.3
7.16 e7(-5)↓e6(-14)⊕so(2)
8 Branching Laws for Non-holomorphic Discrete Series Type
8.1 u(m,n)↓u(m,k)⊕u(n-k)
8.1.1
8.1.2
8.1.3
8.2 so(2m,n)↓so(2m,k)⊕so(n-k)
8.2.1
8.2.2
8.2.3
8.3 sp(m,n)↓sp(m,k)⊕sp(n-k)
8.3.1
8.3.2
8.3.3
8.4 sp(m,n)↓sp(m,k)⊕sp(n-k) (Isolated Type)
8.5 su(2,2n)↓sp(1,n)
8.6 so(4,2n)↓u(2,n)
8.6.1
8.6.2
8.7 f4(4)↓sp(1,2)⊕su(2)
8.8 f4(4)↓so(4,5)
8.8.1
8.8.2
8.9 e6(2)↓so(4,6)⊕so(2)
8.9.1
8.9.2
8.9.3
8.10 e6(2)↓su(2,4)⊕su(2)
8.11 e6(2)↓sp(1,3)
8.12 e6(2)↓f4(4)
8.12.1
8.12.2
8.12.3
8.12.4
8.13 e7(-5)↓so(4,8)⊕su(2)
8.14 e7(-5)↓su(2,6)
8.15 e7(-5)↓e6(2)⊕so(2)
8.15.1
8.15.2
8.15.3
8.16 e8(-24)↓so(4,12)
8.17 e8(-24)↓e7(-5)⊕su(2)
9 Branching Laws for Holomorphic Type
9.1 u(m,n)↓u(k,l)⊕u(m-k,n-l)
9.1.1
9.1.2
9.2 u(n,n)↓so*(2n)
9.3 u(n,n)↓sp(n,R)
9.4 so(2,n)↓so(2,k)⊕so(n-k)
9.5 so(2,2n)↓u(1,n)
9.5.1
9.5.2
9.6 so*(2n)↓u(m,n-m)
9.6.1
9.6.2
9.7 so*(2n)↓so*(2m)⊕so*(2n-2m)
9.7.1
9.7.2
9.7.3
9.8 sp(n,R)↓u(m,n-m)
9.9 sp(n,R)↓sp(m,R)⊕sp(n-m,R)
9.9.1
9.9.2
9.10 e6(-14)↓so(2,8)⊕so(2)
9.10.1
9.10.2
9.10.3
9.11 e6(-14)↓su(2,4)⊕su(2)
9.12 e6(-14)↓so*(10)⊕so(2)
9.12.1
9.12.2
9.12.3
9.13 e6(-14)↓su(1,5)⊕sl(2,R)
9.14 e7(-25)↓e6(-14)⊕so(2)
9.14.1
9.14.2
9.15 e7(-25)↓so(2,10)⊕sl(2,R)
9.16 e7(-25)↓su(6,2)
9.17 e7(-25)↓so*(12)⊕su(2)
10 Tensor Product of Holomorphic Representations
10.1 Tensor Product for u(m,n)
10.1.1
10.1.2
10.2 Tensor Product for so(2,2n+1)
10.3 Tensor Product for so(2,2n)
10.3.1
10.3.2
10.4 Tensor Product for so*(2n)
10.4.1
10.4.2
10.4.3
10.4.4
10.5 Tensor Product for sp(n,R)
10.5.1
10.5.2
10.6 Tensor Product for e6(-14)
10.6.1
10.6.2
10.6.3
10.7 Tensor Product for e7(-25)
11 Orbit Decomposition of Partial Flag Varieties
11.1 (GL(m+n),GL(m)×GL(n))
11.1.1
11.1.2
11.1.3
11.2 (GL(2n),Sp(n))
11.3 (SO(2m+2n),SO(2m)×SO(2n))
11.3.1
11.3.2
11.3.3
11.3.4
11.4 (SO(2m+2n),SO(2m+1)×SO(2n-1))
11.4.1
11.4.2
11.5 (SO(2n+1),SO(2n))
11.6 (SO(2n),GL(n))
11.6.1
11.6.2
11.6.3
11.7 (Sp(m+n),Sp(m)×Sp(n))
11.7.1
11.7.2
11.8 (E6, Spin (10)×SO(2))
11.9 (E6,SL(6)×Sp(1))
12 Formulas of Finite-Dimensional Representations
13 Some Equations of (g,K)-Modules
13.1 u(m,n) (Holomorphic)
13.2 so(2,2n)
13.3 so(2,2n-1)
13.4 so*(2n)
13.5 sp(n,R)
13.6 u(m,n) (Non-holomorphic)
13.7 so(2m,n)
13.8 sp(m,n)
13.9 Dual Pair Correspondence
References
Rankin-Cohen Brackets for Orthogonal Lie Algebras and Bilinear Conformally Equivariant Differential Operators
1 Introduction and Motivation
2 F-Method and Diagonal Branching Problem for Generalized Verma Modules
3 The Construction of Singular Vectors for Diagonal Branching Rules Applied to Scalar Generalized Verma Modules for so(n+1,1,R)
3.1 Description of the Representation
3.2 Reduction to Scalar Differential Equation in Two Variables
3.3 Polynomial Solutions of the Differential Equation in Two Variables Produced by the F-Method
4 Application: The Classification of Bilinear Conformally Equivariant Differential Operators on Line Bundles
References
开源日期
2025-03-26
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.