upload/duxiu_main2/【星空藏书馆】/【星空藏书馆】等多个文件/Kindle电子书库(012)/综合书籍(007)/综合1(011)/书2/九月虺原版书17855本单个20G压缩版/extracted__6.待分类1 书名 数字-O.zip/6.\xb4\xfd\xb7\xd6\xc0\xe01 \xca\xe9\xc3\xfb \xca\xfd\xd7\xd6-O/\xc2\xad\xa3\xba\xd5\xe6\xc0\xed\xb5ķ\xa8\xd4\xf2.pdf
Logic : the laws of truth 🔍
Nicholas J.J. Smith, Nicholas J. J. Smith
Princeton University Press, Princeton University Press, Princeton, 2012
英语 [en] · PDF · 3.0MB · 2012 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
Der Autor vermittelt logisches Grundwissen, fundamentale Beweisprinzipien und Methoden der Mathematik. Dabei geht er u. a. folgenden Fragen nach: Was unterscheidet endliche von unendlichen Mengen? Wie lassen sich die ganzen, rationalen und reellen Zahlen aus den natürlichen Zahlen konstruieren? Welche grundlegenden topologischen Eigenschaften besitzt die Menge der reellen Zahlen? Lassen sich die natürlichen oder reellen Zahlen vollständig axiomatisch beschreiben? Pflichtlektüre für alle Studierenden der Mathematik, Physik und Informatik Preface xi Acknowledgments xv Part I Propositional Logic 1 Chapter 1: Propositions and Arguments 3 1.1 What Is Logic? 3 1.2 Propositions 5 1.3 Arguments 11 1.4 Logical Consequence 14 1.5 Soundness 21 1.6 Connectives 23 Chapter 2: The Language of Propositional Logic 32 2.1 Motivation 32 2.2 Basic Propositions of PL 32 2.3 Connectives of PL 36 2.4 Wff Variables 39 2.5 Syntax of PL 40 Chapter 3: Semantics of Propositional Logic 49 3.1 Truth Tables for the Connectives 49 3.2 Truth Values of Complex Propositions 51 3.3 Truth Tables for Complex Propositions 54 3.4 Truth Tables for Multiple Propositions 58 3.5 Connectives and Truth Functions 59 Chapter 4: Uses of Truth Tables 63 4.1 Arguments 63 4.2 Single Propositions 67 4.3 Two Propositions 69 4.4 Sets of Propositions 74 4.5 More on Validity 75 Chapter 5: Logical Form 79 5.1 Abstracting from Content: From Propositions to Forms 81 5.2 Instances: From Forms to Propositions 82 5.3 Argument Forms 84 5.4 Validity and Form 87 5.5 Invalidity and Form 91 5.6 Notable Argument Forms 94 5.7 Other Logical Properties 95 Chapter 6: Connectives: Translation and Adequacy 97 6.1 Assertibility and Implicature 97 6.2 Conjunction 103 6.3 Conditional and Biconditional 110 6.4 Disjunction 117 6.5 Negation 122 6.6 Functional Completeness 124 7 Trees for Propositional Logic 134 7.1 Tree Rules 136 7.2 Applying the Rules 140 7.3 Uses of Trees 146 7.4 Abbreviations 156 Part II Predicate Logic 161 Chapter 8: The Language of Monadic Predicate Logic 163 8.1 The Limitations of Propositional Logic 164 8.2 MPL, Part I: Names and Predicates 167 8.3 MPL, Part II: Variables and Quantifiers 172 8.4 Syntax of MPL 182 Chapter 9: Semantics of Monadic Predicate Logic 189 9.1 Models; Truth and Falsity of Uncomplicated Propositions 191 9.2 Connectives 196 9.3 Quantified Propositions: The General Case 197 9.4 Semantics of MPL: Summary 204 9.5 Analyses and Methods 206 Chapter 10: Trees for Monadic Predicate Logic 211 10.1 Tree Rules 212 10.2 Using Trees 223 10.3 Infinite Trees 228 Chapter 11: Models, Propositions, and Ways the World Could Be 242 11.1 Translation 243 11.2 Valuation 247 11.3 Axiomatization 251 11.4 Propositions 253 11.5 Logical Consequence and NTP 257 11.6 Postulates 261 Chapter 12: General Predicate Logic 264 12.1 The Language of General Predicate Logic 264 12.2 Semantics of GPL 276 12.3 Trees for General Predicate Logic 282 12.4 Postulates 286 12.5 Moving Quantifiers 293 Chapter 13: Identity 298 13.1 The Identity Relation 299 13.2 The Identity Predicate 303 13.3 Semantics of Identity 306 13.4 Trees for General Predicate Logic with Identity 311 13.5 Numerical Quantifiers 321 13.6 Definite Descriptions 326 13.7 Function Symbols 343 Part III Foundations and Variations 355 14 Metatheory 357 14.1 Soundness and Completeness 358 14.2 Decidability and Undecidability 368 14.3 Other Logical Properties 374 14.4 Expressive Power 382 15 Other Methods of Proof 385 15.1 Axiomatic Systems 386 15.2 Natural Deduction 407 15.3 Sequent Calculus 421 16 Set Theory 438 16.1 Sets 438 16.2 Ordered Pairs and Ordered n-tuples 449 16.3 Relations 453 16.4 Functions 454 16.5 Sequences 458 16.6 Multisets 460 16.7 Syntax 462 Notes 467 References 509 Index 515
备用文件名
upload/newsarch_ebooks_2025_10/2019/04/08/0691151636_Logic.pdf
备用文件名
lgli/M_Mathematics/MA_Algebra/MAml_Mathematical logic/Smith N.J. Logic.. The Laws of Truth (PUP, 2012)(ISBN 0691151636)(O)(545s)_MAml_.pdf
备用文件名
lgrsnf/M_Mathematics/MA_Algebra/MAml_Mathematical logic/Smith N.J. Logic.. The Laws of Truth (PUP, 2012)(ISBN 0691151636)(O)(545s)_MAml_.pdf
备用文件名
nexusstc/Logic : the laws of truth/8bea0bf44ac2cb77f396aeddf96ea1d3.pdf
备用文件名
zlib/Society, Politics & Philosophy/Anthropology/Nicholas J J Smith/Logic: The Laws of Truth_1314642.pdf
备选标题
9781400842315_Web.pdf
备选作者
Nicholas Jeremy Josef Smith
备用出版商
Princeton University, Department of Art & Archaeology
备用出版商
Princeton Electronic
备用版本
United States, United States of America
备用版本
Princeton, N.J, New Jersey, 2012
备用版本
Princeton, cop. 2012
备用版本
4, 2012
元数据中的注释
kolxoz -- 10
元数据中的注释
lg872610
元数据中的注释
producers:
Acrobat Distiller 9.0.0 (Windows); modified using iTextSharp 5.0.0 (c) 1T3XT BVBA
Acrobat Distiller 9.0.0 (Windows); modified using iTextSharp 5.0.0 (c) 1T3XT BVBA
元数据中的注释
{"isbns":["0691151636","9780691151632"],"last_page":545,"publisher":"Princeton University Press"}
元数据中的注释
Includes bibliographical references and index.
备用描述
Cover 1
Contents 8
Preface 12
Acknowledgments 16
PART I: Propositional Logic 18
1 Propositions and Arguments 20
1.1 What Is Logic? 20
1.2 Propositions 22
1.3 Arguments 28
1.4 Logical Consequence 31
1.5 Soundness 38
1.6 Connectives 40
2 The Language of Propositional Logic 49
2.1 Motivation 49
2.2 Basic Propositions of PL 49
2.3 Connectives of PL 53
2.4 Wff Variables 56
2.5 Syntax of PL 57
3 Semantics of Propositional Logic 66
3.1 Truth Tables for the Connectives 66
3.2 Truth Values of Complex Propositions 68
3.3 Truth Tables for Complex Propositions 71
3.4 Truth Tables for Multiple Propositions 75
3.5 Connectives and Truth Functions 76
4 Uses of Truth Tables 80
4.1 Arguments 80
4.2 Single Propositions 84
4.3 Two Propositions 86
4.4 Sets of Propositions 91
4.5 More on Validity 92
5 Logical Form 96
5.1 Abstracting from Content: From Propositions to Forms 98
5.2 Instances: From Forms to Propositions 99
5.3 Argument Forms 101
5.4 Validity and Form 104
5.5 Invalidity and Form 108
5.6 Notable Argument Forms 111
5.7 Other Logical Properties 112
6 Connectives: Translation and Adequacy 114
6.1 Assertibility and Implicature 114
6.2 Conjunction 120
6.3 Conditional and Biconditional 127
6.4 Disjunction 134
6.5 Negation 139
6.6 Functional Completeness 141
7 Trees for Propositional Logic 151
7.1 Tree Rules 153
7.2 Applying the Rules 157
7.3 Uses of Trees 163
7.4 Abbreviations 173
PART II: Predicate Logic 178
8 The Language of Monadic Predicate Logic 180
8.1 The Limitations of Propositional Logic 181
8.2 MPL, Part I: Names and Predicates 184
8.3 MPL, Part II: Variables and Quantifiers 189
8.4 Syntax of MPL 199
9 Semantics of Monadic Predicate Logic 206
9.1 Models; Truth and Falsity of Uncomplicated Propositions 208
9.2 Connectives 213
9.3 Quantified Propositions: The General Case 214
9.4 Semantics of MPL: Summary 221
9.5 Analyses and Methods 223
10 Trees for Monadic Predicate Logic 228
10.1 Tree Rules 229
10.2 Using Trees 240
10.3 Infinite Trees 245
11 Models, Propositions, and Ways the World Could Be 259
11.1 Translation 260
11.2 Valuation 264
11.3 Axiomatization 268
11.4 Propositions 270
11.5 Logical Consequence and NTP 274
11.6 Postulates 278
12 General Predicate Logic 281
12.1 The Language of General Predicate Logic 281
12.2 Semantics of GPL 293
12.3 Trees for General Predicate Logic 299
12.4 Postulates 303
12.5 Moving Quantifiers 310
13 Identity 315
13.1 The Identity Relation 316
13.2 The Identity Predicate 320
13.3 Semantics of Identity 323
13.4 Trees for General Predicate Logic with Identity 328
13.5 Numerical Quantifiers 338
13.6 Definite Descriptions 343
13.7 Function Symbols 360
PART III: Foundations and Variations 372
14 Metatheory 374
14.1 Soundness and Completeness 375
14.2 Decidability and Undecidability 385
14.3 Other Logical Properties 391
14.4 Expressive Power 399
15 Other Methods of Proof 402
15.1 Axiomatic Systems 403
15.2 Natural Deduction 424
15.3 Sequent Calculus 438
16 Set Theory 455
16.1 Sets 455
16.2 Ordered Pairs and Ordered n-tuples 466
16.3 Relations 470
16.4 Functions 471
16.5 Sequences 475
16.6 Multisets 477
16.7 Syntax 479
Notes 484
References 526
Index 532
A 532
B 532
C 533
D 534
E 535
F 535
G 536
H 536
I 536
J 537
K 537
L 537
M 537
N 538
O 539
P 539
Q 540
R 541
S 541
T 543
U 544
V 544
W 545
Z 545
Contents 8
Preface 12
Acknowledgments 16
PART I: Propositional Logic 18
1 Propositions and Arguments 20
1.1 What Is Logic? 20
1.2 Propositions 22
1.3 Arguments 28
1.4 Logical Consequence 31
1.5 Soundness 38
1.6 Connectives 40
2 The Language of Propositional Logic 49
2.1 Motivation 49
2.2 Basic Propositions of PL 49
2.3 Connectives of PL 53
2.4 Wff Variables 56
2.5 Syntax of PL 57
3 Semantics of Propositional Logic 66
3.1 Truth Tables for the Connectives 66
3.2 Truth Values of Complex Propositions 68
3.3 Truth Tables for Complex Propositions 71
3.4 Truth Tables for Multiple Propositions 75
3.5 Connectives and Truth Functions 76
4 Uses of Truth Tables 80
4.1 Arguments 80
4.2 Single Propositions 84
4.3 Two Propositions 86
4.4 Sets of Propositions 91
4.5 More on Validity 92
5 Logical Form 96
5.1 Abstracting from Content: From Propositions to Forms 98
5.2 Instances: From Forms to Propositions 99
5.3 Argument Forms 101
5.4 Validity and Form 104
5.5 Invalidity and Form 108
5.6 Notable Argument Forms 111
5.7 Other Logical Properties 112
6 Connectives: Translation and Adequacy 114
6.1 Assertibility and Implicature 114
6.2 Conjunction 120
6.3 Conditional and Biconditional 127
6.4 Disjunction 134
6.5 Negation 139
6.6 Functional Completeness 141
7 Trees for Propositional Logic 151
7.1 Tree Rules 153
7.2 Applying the Rules 157
7.3 Uses of Trees 163
7.4 Abbreviations 173
PART II: Predicate Logic 178
8 The Language of Monadic Predicate Logic 180
8.1 The Limitations of Propositional Logic 181
8.2 MPL, Part I: Names and Predicates 184
8.3 MPL, Part II: Variables and Quantifiers 189
8.4 Syntax of MPL 199
9 Semantics of Monadic Predicate Logic 206
9.1 Models; Truth and Falsity of Uncomplicated Propositions 208
9.2 Connectives 213
9.3 Quantified Propositions: The General Case 214
9.4 Semantics of MPL: Summary 221
9.5 Analyses and Methods 223
10 Trees for Monadic Predicate Logic 228
10.1 Tree Rules 229
10.2 Using Trees 240
10.3 Infinite Trees 245
11 Models, Propositions, and Ways the World Could Be 259
11.1 Translation 260
11.2 Valuation 264
11.3 Axiomatization 268
11.4 Propositions 270
11.5 Logical Consequence and NTP 274
11.6 Postulates 278
12 General Predicate Logic 281
12.1 The Language of General Predicate Logic 281
12.2 Semantics of GPL 293
12.3 Trees for General Predicate Logic 299
12.4 Postulates 303
12.5 Moving Quantifiers 310
13 Identity 315
13.1 The Identity Relation 316
13.2 The Identity Predicate 320
13.3 Semantics of Identity 323
13.4 Trees for General Predicate Logic with Identity 328
13.5 Numerical Quantifiers 338
13.6 Definite Descriptions 343
13.7 Function Symbols 360
PART III: Foundations and Variations 372
14 Metatheory 374
14.1 Soundness and Completeness 375
14.2 Decidability and Undecidability 385
14.3 Other Logical Properties 391
14.4 Expressive Power 399
15 Other Methods of Proof 402
15.1 Axiomatic Systems 403
15.2 Natural Deduction 424
15.3 Sequent Calculus 438
16 Set Theory 455
16.1 Sets 455
16.2 Ordered Pairs and Ordered n-tuples 466
16.3 Relations 470
16.4 Functions 471
16.5 Sequences 475
16.6 Multisets 477
16.7 Syntax 479
Notes 484
References 526
Index 532
A 532
B 532
C 533
D 534
E 535
F 535
G 536
H 536
I 536
J 537
K 537
L 537
M 537
N 538
O 539
P 539
Q 540
R 541
S 541
T 543
U 544
V 544
W 545
Z 545
备用描述
<p>Logic is essential to correct reasoning and also has important theoretical applications in philosophy, computer science, linguistics, and mathematics. This book provides an exceptionally clear introduction to classical logic, with a unique approach that emphasizes both the hows and whys of logic. Here Nicholas Smith thoroughly covers the formal tools and techniques of logic while also imparting a deeper understanding of their underlying rationales and broader philosophical significance. In addition, this is the only introduction to logic available today that presents all the major forms of proof—trees, natural deduction in all its major variants, axiomatic proofs, and sequent calculus. The book also features numerous exercises, with solutions available on an accompanying website.</p>
<p><i>Logic</i> is the ideal textbook for undergraduates and graduate students seeking a comprehensive and accessible introduction to the subject.</p>
<ul>
<li>Provides an essential introduction to classical logic</li>
<li>Emphasizes the how and why of logic</li>
<li>Covers both formal and philosophical issues</li>
<li>Presents all the major forms of proof—from trees to sequent calculus</li>
<li>Features numerous exercises, with solutions available at personal.usyd.edu.au/~njjsmith/lawsoftruth</li>
<li>The ideal textbook for undergraduates and graduate students</li>
</ul>
<p><i>Logic</i> is the ideal textbook for undergraduates and graduate students seeking a comprehensive and accessible introduction to the subject.</p>
<ul>
<li>Provides an essential introduction to classical logic</li>
<li>Emphasizes the how and why of logic</li>
<li>Covers both formal and philosophical issues</li>
<li>Presents all the major forms of proof—from trees to sequent calculus</li>
<li>Features numerous exercises, with solutions available at personal.usyd.edu.au/~njjsmith/lawsoftruth</li>
<li>The ideal textbook for undergraduates and graduate students</li>
</ul>
备用描述
Logic is essential to correct reasoning and also has important theoretical applications in philosophy, computer science, linguistics, and mathematics. This book provides an exceptionally clear introduction to classical logic, with a unique approach that emphasizes both the hows and whys of logic. Here Nicholas Smith thoroughly covers the formal tools and techniques of logic while also imparting a deeper understanding of their underlying rationales and broader philosophical significance. In addition, this is the only introduction to logic available today that presents all the major forms of proof--trees, natural deduction in all its major variants, axiomatic proofs, and sequent calculus. The book also features numerous exercises, with solutions available on an accompanying website. Logic is the ideal textbook for undergraduates and graduate students seeking a comprehensive and accessible introduction to the subject. Provides an essential introduction to classical logic Emphasizes the how and why of logic Covers both formal and philosophical issues Presents all the major forms of proof--from trees to sequent calculus Features numerous exercises, with solutions available at http://njjsmith.com/philosophy/lawsoftruth/ The ideal textbook for undergraduates and graduate students
备用描述
Logic is essential to correct reasoning and also has important theoretical applications in philosophy, computer science, linguistics, and mathematics. This book provides an exceptionally clear introduction to classical logic, with a unique approach that emphasizes both the hows and whys of logic. Here Nicholas Smith thoroughly covers the formal tools and techniques of logic while also imparting a deeper understanding of their underlying rationales and broader philosophical significance. In addition, this is the only introduction to logic available today that presents all the major forms of proof - trees, natural deduction in all its major variants, axiomatic proofs, and sequent calculus. The book also features numerous exercises, with solutions available on an accompanying website. "Logic" is the ideal textbook for undergraduates and graduate students seeking a comprehensive and accessible introduction to the subject. This title provides an essential introduction to classical logic. It emphasizes the how and why of logic. It covers both formal and philosophical issues. It presents all the major forms of proof - from trees to sequent calculus. It features numerous exercises. This is the ideal textbook for undergraduates and graduate students
开源日期
2012-12-29
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.