nexusstc/Advances in Adaptive Radar Detection and Range Estimation/71a04842481112781f8ffbbe5e0b7830.pdf
Advances in Adaptive Radar Detection and Range Estimation 🔍
Chengpeng Hao;Danilo Orlando;Jun Liu;Chaoran Yin(auth.)
Springer Singapore : Imprint: Springer, 1st ed. 2022, Singapore, 2022
英语 [en] · PDF · 7.4MB · 2022 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
This book provides a comprehensive and systematic framework for the design of adaptive architectures, which take advantage of the available a priori information to enhance the detection performance. Moreover, this framework also provides guidelines to develop decision schemes capable of estimating the target position within the range bin. To this end, the readers are driven step-by-step towards those aspects that have to be accounted for at the design stage, starting from the exploitation of system and/or environment information up to the use of target energy leakage (energy spillover), which allows inferring on the target position within the range cell under test.
In addition to design issues, this book presents an extensive number of illustrative examples based upon both simulated and real-recorded data. Moreover, the performance analysis is enriched by considerations about the trade-off between performances and computational requirements.
Finally, this book could be a valuable resource for PhD students, researchers, professors, and, more generally, engineers working on statistical signal processing and its applications to radar systems.
In addition to design issues, this book presents an extensive number of illustrative examples based upon both simulated and real-recorded data. Moreover, the performance analysis is enriched by considerations about the trade-off between performances and computational requirements.
Finally, this book could be a valuable resource for PhD students, researchers, professors, and, more generally, engineers working on statistical signal processing and its applications to radar systems.
备用文件名
lgli/10.1007_978-981-16-6399-4.pdf
备用文件名
lgrsnf/10.1007_978-981-16-6399-4.pdf
备用文件名
zlib/no-category/Chengpeng Hao, Danilo Orlando, Jun Liu, Chaoran Yin/Advances in Adaptive Radar Detection and Range Estimation_18279492.pdf
备选作者
Hao, Chengpeng, Orlando, Danilo, Liu, Jun, Yin, Chaoran
备选作者
Chengpeng Hao, Danilo Orlando, Jun Liu, Chaoran Yin
备选作者
Springer Nature
备用出版商
Springer Nature Singapore Pte Ltd Fka Springer Science + Business Media Singapore Pte Ltd
备用出版商
SPRINGER VERLAG, SINGAPOR
备用出版商
Springer : Science Press
备用版本
Singapur, Beijing, 2020
备用版本
Singapore, Singapore
备用版本
Singapore, 2021
备用版本
1, 2021
备用版本
2, 2021
元数据中的注释
{"edition":"1","isbns":["9789811663987","9789811663994","981166398X","9811663998"],"last_page":218,"publisher":"Springer"}
备用描述
Acronyms and Symbols
Contents
1 Introduction to Radar Systems
1.1 Historical Background
1.2 Pulsed Radar Architectures
1.3 An Introduction to Design Parameters
1.3.1 The Ambiguity Function
1.3.2 Doppler Resolution and the Pulse Burst Waveform
1.3.3 Radar Equation
1.4 Organization and Outline of the Book
References
2 Adaptive Radar Detection: Classical Approach
2.1 Analytical Models for Target and Interference
2.2 Decision Theory in Radar
2.2.1 Hypothesis Testing Problems
2.2.2 Design Criteria
2.3 Conventional Detectors for Point-Like Targets
2.3.1 Decision Rules
2.3.2 CFAR Property
References
3 Knowledge-Aided Detectors
3.1 Persymmetric Detectors
3.1.1 Problem Formulation
3.1.2 Detector Designs
3.1.3 Illustrative Examples
3.2 Symmetric Spectrum Detectors
3.2.1 Problem Formulation
3.2.2 Detector Designs
3.2.3 Illustrative Examples
3.3 Joint Exploitation of Persymmetry and Symmetry
3.3.1 Problem Formulation
3.3.2 Detector Designs
3.3.3 Illustrative Examples
References
4 Detectors with Enhanced Range Estimation Capabilities
4.1 Localization Detectors for Point-Like Targets
4.1.1 Problem Formulation
4.1.2 Detector Designs
4.1.3 Illustrative Examples
4.2 Polarimetric Localization Detectors
4.2.1 Problem Formulation
4.2.2 Detector Designs
4.2.3 Illustrative Examples
4.3 Oversampling Localization Detectors
4.3.1 Problem Formulation
4.3.2 Detector Designs
4.3.3 Illustrative Examples
References
5 Knowledge-Aided Localization Detectors
5.1 Persymmetric Localization Detectors
5.1.1 Problem Formulation
5.1.2 Detector Designs
5.1.3 Illustrative Examples
5.2 Symmetric Spectrum Localization Detectors
5.2.1 Problem Formulation
5.2.2 Detector Designs
5.2.3 Illustrative Examples
5.3 Bayesian Localization Detectors
5.3.1 Problem Formulation
5.3.2 Detector Designs
5.3.3 Illustrative Examples
References
Appendix A Complex Gaussian Distribution with Circular Symmetry
Appendix B The Equivalent form of Detector (3.25)
Appendix C Derivations of the Distribution of Defined in (3.33)
Appendix D The Equivalent form of Detector (3.61)
Appendix E The Proof of Proposition 3.2
Appendix F The Proof of Proposition 3.4
Appendix G Expressions of the Coefficients for (3.128) and (3.130)
Appendix H The Proof of Proposition 3.5
Appendix I The Correlation Model of the Clutter Returns
References
Contents
1 Introduction to Radar Systems
1.1 Historical Background
1.2 Pulsed Radar Architectures
1.3 An Introduction to Design Parameters
1.3.1 The Ambiguity Function
1.3.2 Doppler Resolution and the Pulse Burst Waveform
1.3.3 Radar Equation
1.4 Organization and Outline of the Book
References
2 Adaptive Radar Detection: Classical Approach
2.1 Analytical Models for Target and Interference
2.2 Decision Theory in Radar
2.2.1 Hypothesis Testing Problems
2.2.2 Design Criteria
2.3 Conventional Detectors for Point-Like Targets
2.3.1 Decision Rules
2.3.2 CFAR Property
References
3 Knowledge-Aided Detectors
3.1 Persymmetric Detectors
3.1.1 Problem Formulation
3.1.2 Detector Designs
3.1.3 Illustrative Examples
3.2 Symmetric Spectrum Detectors
3.2.1 Problem Formulation
3.2.2 Detector Designs
3.2.3 Illustrative Examples
3.3 Joint Exploitation of Persymmetry and Symmetry
3.3.1 Problem Formulation
3.3.2 Detector Designs
3.3.3 Illustrative Examples
References
4 Detectors with Enhanced Range Estimation Capabilities
4.1 Localization Detectors for Point-Like Targets
4.1.1 Problem Formulation
4.1.2 Detector Designs
4.1.3 Illustrative Examples
4.2 Polarimetric Localization Detectors
4.2.1 Problem Formulation
4.2.2 Detector Designs
4.2.3 Illustrative Examples
4.3 Oversampling Localization Detectors
4.3.1 Problem Formulation
4.3.2 Detector Designs
4.3.3 Illustrative Examples
References
5 Knowledge-Aided Localization Detectors
5.1 Persymmetric Localization Detectors
5.1.1 Problem Formulation
5.1.2 Detector Designs
5.1.3 Illustrative Examples
5.2 Symmetric Spectrum Localization Detectors
5.2.1 Problem Formulation
5.2.2 Detector Designs
5.2.3 Illustrative Examples
5.3 Bayesian Localization Detectors
5.3.1 Problem Formulation
5.3.2 Detector Designs
5.3.3 Illustrative Examples
References
Appendix A Complex Gaussian Distribution with Circular Symmetry
Appendix B The Equivalent form of Detector (3.25)
Appendix C Derivations of the Distribution of Defined in (3.33)
Appendix D The Equivalent form of Detector (3.61)
Appendix E The Proof of Proposition 3.2
Appendix F The Proof of Proposition 3.4
Appendix G Expressions of the Coefficients for (3.128) and (3.130)
Appendix H The Proof of Proposition 3.5
Appendix I The Correlation Model of the Clutter Returns
References
备用描述
This book provides a comprehensive and systematic framework for the design of adaptive architectures, which take advantage of the available a priori information to enhance the detection performance. Moreover, this framework also provides guidelines to develop decision schemes capable of estimating the target position within the range bin. To this end, the readers are driven step-by-step towards those aspects that have to be accounted for at the design stage, starting from the exploitation of system and/or environment information up to the use of target energy leakage (energy spillover), which allows inferring on the target position within the range cell under test.In addition to design issues, this book presents an extensive number of illustrative examples based upon both simulated and real-recorded data. Moreover, the performance analysis is enriched by considerations about the trade-off between performances and computational requirements.Finally, thisbook could be a valuable resource for PhD students, researchers, professors, and, more generally, engineers working on statistical signal processing and its applications to radar systems.
Erscheinungsdatum: 04.12.2021
Erscheinungsdatum: 04.12.2021
开源日期
2021-12-08
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.