duxiu/initial_release/稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文=Rare Earth Permanent-Magnet Alloys's High Temperature Phase Transformation_ In Situ and Dynamic Observation and Its Application in Material Design_13748553.zip
稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文 🔍
潘树明著, Shuming Pan
北京:冶金工业出版社, 1st ed. 2013, Berlin, Heidelberg, 2013
英语 [en] · 中文 [zh] · PDF · 52.4MB · 2013 · 📗 未知类型的图书 · 🚀/duxiu/zlibzh · Save
描述
1 (p1): Chapter 1 Introduction 2 (p1-1): 1.1 Rare EarthPermanent-magnetAlloys 2 (p1-1-1): 1.1.1 Rare earth 2 (p1-1-2): 1.1.2 Classification and development of rare earth permanent-magnet alloys 4 (p1-1-3): 1.1.3 Crystal structure of rare earth permanent-magnet alloys 7 (p1-1-4): 1.1.4 Magnetic parameters of rare earth permanent-magnet alloys 8 (p1-1-5): 1.1.5 Criterion of permanent-magnet alloys(materials) 8 (p1-2): 1.2 Principle for Alloy Phase and Phase Transformation and Growth Rule of New Phase 9 (p1-2-1): 1.2.1 Phase 9 (p1-2-2): 1.2.2 Phase transformation 9 (p1-2-3): 1.2.3 Alloy 10 (p1-2-4): 1.2.4 Material 10 (p1-2-5): 1.2.5 Alloy phase 10 (p1-2-6): 1.2.6 Solid solution 10 (p1-2-7): 1.2.7 Exsolution precipitation 10 (p1-2-8): 1.2.8 Thermodynamic bases for phase transformation and classification 17 (p1-2-9): 1.2.9 Single crystal 17 (p1-2-10): 1.2.10 Single crystal superalloy 18 (p1-2-11): 1.2.11 Enthalpy 18 (p1-2-12): 1.2.12 Entropy 19 (p1-2-13): 1.2.13 Latent heat of phase transformation 19 (p1-2-14): 1.2.14 Driving force of phase transformation 20 (p1-2-15): 1.2.15 Rule of growing up of new phase 21 (p1-3): 1.3 Research Methods of the Magnetic Properties of Rare Earth Permanent Magnets 25 (p1-4): Reterences 27 (p2): Chapter 2 The First Generation Rare Earth Permanent-magnet Alloys 28 (p2-1): 2.1 High temperature Phase Transition and Magnetic Properties of SmCo5 Permanent-magnet Alloys 35 (p2-2): 2.2 The in Situ and Dynamic Observation on High Temperature Phase Transformation of SmCo5 Permanent Magnetic Alloyat 25-750°C 36 (p2-2-1): 2.2.1 Magnetic measurement 38 (p2-2-2): 2.2.2 Sample preparation and experiment method 39 (p2-2-3): 2.2.3 Influence of annealing treated specimen on coercivity 41 (p2-2-4): 2.2.4 The in situ and dynamic observation by 1000kV HVEM under heating condition 50 (p2-2-5): 2.2.5 Discussion 54 (p2-3): 2.3...
备用文件名
zlibzh/no-category/潘树明著, Shuming Pan/稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文_44087682.pdf
备选标题
Rare Earth Permanent-Magnet Alloys’ High Temperature Phase Transformation : In Situ and Dynamic Observation and Its Application in Material Design
备选作者
Pan, Shuming
备用出版商
Spektrum Akademischer Verlag. in Springer-Verlag GmbH
备用出版商
Springer Berlin Heidelberg : Imprint : Springer
备用出版商
Metallurgical Industry Press Springer
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
Springer London, Limited
备用出版商
Springer Nature
备用版本
China, People's Republic, China
备用版本
Springer Nature, Berlin, 2013
备用版本
Beijing, Heidelberg, 2013
备用版本
Di 1 ban, Beijing, 2013
备用版本
Germany, Germany
备用版本
2, 20141201
备用版本
2013, 2014
元数据中的注释
Bookmarks: p1 (p1): Chapter 1 Introduction
p1-1 (p2): 1.1 Rare EarthPermanent-magnetAlloys
p1-1-1 (p2): 1.1.1 Rare earth
p1-1-2 (p2): 1.1.2 Classification and development of rare earth permanent-magnet alloys
p1-1-3 (p4): 1.1.3 Crystal structure of rare earth permanent-magnet alloys
p1-1-4 (p7): 1.1.4 Magnetic parameters of rare earth permanent-magnet alloys
p1-1-5 (p8): 1.1.5 Criterion of permanent-magnet alloys(materials)
p1-2 (p8): 1.2 Principle for Alloy Phase and Phase Transformation and Growth Rule of New Phase
p1-2-1 (p9): 1.2.1 Phase
p1-2-2 (p9): 1.2.2 Phase transformation
p1-2-3 (p9): 1.2.3 Alloy
p1-2-4 (p10): 1.2.4 Material
p1-2-5 (p10): 1.2.5 Alloy phase
p1-2-6 (p10): 1.2.6 Solid solution
p1-2-7 (p10): 1.2.7 Exsolution precipitation
p1-2-8 (p10): 1.2.8 Thermodynamic bases for phase transformation and classification
p1-2-9 (p17): 1.2.9 Single crystal
p1-2-10 (p17): 1.2.10 Single crystal superalloy
p1-2-11 (p18): 1.2.11 Enthalpy
p1-2-12 (p18): 1.2.12 Entropy
p1-2-13 (p19): 1.2.13 Latent heat of phase transformation
p1-2-14 (p19): 1.2.14 Driving force of phase transformation
p1-2-15 (p20): 1.2.15 Rule of growing up of new phase
p1-3 (p21): 1.3 Research Methods of the Magnetic Properties of Rare Earth Permanent Magnets
p1-4 (p25): Reterences
p2 (p27): Chapter 2 The First Generation Rare Earth Permanent-magnet Alloys
p2-1 (p28): 2.1 High temperature Phase Transition and Magnetic Properties of SmCo5 Permanent-magnet Alloys
p2-2 (p35): 2.2 The in Situ and Dynamic Observation on High Temperature Phase Transformation of SmCo5 Permanent Magnetic Alloyat 25-750℃
p2-2-1 (p36): 2.2.1 Magnetic measurement
p2-2-2 (p38): 2.2.2 Sample preparation and experiment method
p2-2-3 (p39): 2.2.3 Influence of annealing treated specimen on coercivity
p2-2-4 (p41): 2.2.4 The in situ and dynamic observation by 1000kV HVEM under heating condition
p2-2-5 (p50): 2.2.5 Discussion
p2-3 (p54): 2.3 Magnetism and the in Situ and Dynamic Observation of Permanent MagneticAlloy of SmCo5 byAnnealing at 600-1000℃
p2-3-1 (p55): 2.3.1 Specimen preparation and experimental method
p2-3-2 (p55): 2.3.2 Analysis on chemical composition of the SmCo5 permanent magnetic alloy
p2-3-3 (p55): 2.3.3 Magnetic measurement
p2-3-4 (p56): 2.3.4 Structure of magnetic domain
p2-3-5 (p57): 2.3.5 Irreversible loss of SmCo5 permanent magnetic alloy after annealing at 25-1000℃
p2-3-6 (p58): 2.3.6 Electronic energy spectrum experiment and analysis of SmCos permanent magnetic alloy
p2-3-7 (p61): 2.3.7 The in situ and dynamic observation on eutectoid decomposition of SmCo5 by electronic microscope
p2-3-8 (p62): 2.3.8 The in situ and dynamic observation of SmCo5 in thermal state using transmission electronic microscope
p2-3-9 (p63): 2.3.9 The in situ and dynamic observation on SmCo5 in thermal condition of 750-960℃ by Transmission Electronic Microscope
p2-3-10 (p65): 2.3.10 Discussion
p2-3-11 (p67): 2.3.11 Conclusions
p2-4 (p68): 2.4 Analysis on Variation ofthe Coercivity and Phase Transformation
p2-4-1 (p68): 2.4.1 Specimen preparation and experimental method
p2-4-2 (p69): 2.4.2 Experimental result and discussion
p2-4-3 (p74): 2.4.3 Conclusions
p2-5 (p74): 2.5 The Optic-electronic Spectrum Study on SmCo5 Permanent MagneticAlloy
p2-5-1 (p75): 2.5.1 Specimen preparation technique and experimental condition of optic-electronic energy spectrum
p2-5-2 (p75): 2.5.2 Investigation on surface composition of SmCo5
p2-5-3 (p76): 2.5.3 Atoms concentration variation of elements of samarium,cobalt and oxygen from surface to depth
p2-5-4 (p77): 2.5.4 Surface compound
p2-5-5 (p77): 2.5.5 Conclusions
p2-6 (p77): 2.6 Analysis on Magnetic Hysteresis Loop of SmCo5 Permanent MagneticAlloy
p2-6-1 (p78): 2.6.1 Specimen preparation technique,magnetic measurement and transmission microscope condition and experimental method
p2-6-2 (p78): 2.6.2 Analysis on chemical composition of three kinds of specimens
p2-6-3 (p80): 2.6.3 Analysis on preparation technique
p2-6-4 (p80): 2.6 4 Curve of magnetic performance and analysis at 77-550K
p2-6-5 (p81): 2.6.5 Observation and analysis on specimen using TEM
p2-6-6 (p82): 2.6.6 Conclusions
p2-7 (p82): 2.7 Magnetism of SmCo5 Permanent Alloy at 1.5-523K
p2-7-1 (p82): 2.7.1 Specimen preparation technique,magnetic measurement apparatus and experimental method
p2-7-2 (p83): 2.7.2 Magnetism measurement and curve of SmCo5 permanent magnetic alloy at 1.5K and 40K
p2-7-3 (p85): 2.7.3 Measurement of demagnetization curve and value of magnetic parameter at-196-250℃ by magnetic parameter measurement apparatus
p2-7-4 (p87): 2.7.4 Reversible temperature coefficient of SmCo5 at-196-250℃
p2-7-5 (p87): 2.7.5 Coercivity of SmCo5 at 475-1000℃
p2-7-6 (p89): 2.7.6 Discussion
p2-7-7 (p90): 2.7.7 Conclusions
p2-8 (p90): References
p3 (p95): Chapter 3 The Second Generation Rare Earth Permanent-magnet Alloys
p3-1 (p96): 3.1 Phase Precipitation,Phase Transformation at High Temperature and Magnetism of High Coercivity Sm(Co,Cu,Fe,Zr)7.4
p3-1-1 (p97): 3.1.1 Specimen preparation process and experimental method
p3-1-2 (p98): 3.1.2 Results of specimen magnetic measurement
p3-1-3 (p99): 3.1.3 Microtexture of the alloy at room temperature
p3-1-4 (p101): 3.1.4 The in situ and dynamic observation on precipitation,growth up and high temperature phase transformation of cellular structure from room temperature to high temperature
p3-1-5 (p116): 3.1.5 Conclusions
p3-2 (p118): 3.2 Function of Zirconium on Sm(Co,Cu,Fe,Zr)7.4 Permanent Magnetic Alloy&Observation and Analysis by Electron Microscope
p3-2-1 (p118): 3.2.1 Specimen preparation and experimental method
p3-2-2 (p118): 3.2.2 Research on function of Zirconium
p3-2-3 (p121): 3.2.3 Conclusions
p3-3 (p121): 3.3 Magnetism of High Coercivity Sm(Co,Cu,Fe,M)7 4Permanent Magnetic Alloy at 1.5-523K
p3-3-1 (p122): 3.3.1 Preparation of specimen and magnetism measurement apparatusz and measurement method
p3-3-2 (p122): 3.3.2 Measurement results and discussion
p3-3-3 (p125): 3.3.3 Conclusions
p3-4 (p126): References
p4 (p129): Chapter 4 The Third Generation Rare Earth Permanent Magnet
p4-1 (p129): 4.1 Improvement of the Properties of NdFeB Permanent Magnets Due to Element Substitutions
p4-2 (p133): 4.2 Magnetic Properties and the Occupancy of Co and Ga Atoms for NdFe(Co,Al,Ga)B Permanent-Magnetic Alloys
p4-2-1 (p133): 4.2.1 Preparation and method
p4-2-2 (p134): 4.2.2 Nd16Fe77-xCoxB7 alloy
p4-2-3 (p136): 4.2.3 Nd16Co10Fe67-yAlyB7 and Nd16Co16Fe61-yAlyB7 alloys
p4-2-4 (p138): 4.2.4 Nd16Co16Fe61-xGaxB7 alloy
p4-2-5 (p144): 4.2.5 Conclusions
p4-3 (p145): 4.3 The Studies of Main Phase Nd2Fe14B and Nd2(Fe,Co)14B in NdFeB Permanent-magnet Alloys
p4-3-1 (p145): 4.3.1 The preparation of samples and experimental methods
p4-3-2 (p145): 4.3.2 SEM analysis
p4-3-3 (p146): 4.3.3 The formation of Nd2Fe14B
p4-3-4 (p146): 4.3.4 M?ssbauer spectra at room temperature
p4-3-5 (p147): 4.3.5 Composition analysis and the studies of M?ssbauer spectra for Nd2(Fe,Co)14B
p4-3-6 (p147): 4.3.6 In situ and dynamic observation of TEM on Nd2Fe14B and Nd2(Fe,Co)14B
p4-3-7 (p150): 4.3.7 Conclusions
p4-4 (p150): 4.4 Studies on B-rich Phase in NdFeB Alloy
p4-4-1 (p151): 4.4.1 Preparation process and experimental method
p4-4-2 (p151): 4.4.2 The in situ and dynamic observation of Nd1.11Fe4B4 by TEM
p4-4-3 (p153): 4.4.3 Study on Nd1+εFe4B4 by X-Ray diffraction and M?ssbauer effect
p4-4-4 (p153): 4.4.4 Analysis on Nd1.1Fe4B4 phase
p4-4-5 (p155): 4.4.5 Relationship between B-rich phase and coercivity
p4-4-6 (p156): 4.4.6 Conclusions
p4-5 (p156): 4.5 Influence ofBoron Content in NdFeB on Nd2Fe14B Phase and Magnetic Property
p4-5-1 (p157): 4.5.1 Specimen preparation process and experimental method
p4-5-2 (p157): 4.5.2 Influence of boron content on alloy magnetic property and phase structure
p4-5-3 (p161): 4.5.3 Conclusions
p4-6 (p162): 4.6 High Curie Temperature NdFeCoGaB Permanent Magnetic Alloy
p4-6-1 (p162): 4.6.1 Preparation process and experiment method
p4-6-2 (p163): 4.6.2 Using cobalt to replace part of iron
p4-6-3 (p163): 4.6.3 Use Ga to replace part of iron in NdFeCoB alloy
p4-6-4 (p168): 4.6.4 Conclusions
p4-7 (p168): 4.7 Influence of Adding Element Dysprosium on Performance of NdFeB Alloy
p4-7-1 (p169): 4.7.1 Specimen preparation process and experimental method
p4-7-2 (p169): 4.7.2 Experiment result using SEM
p4-7-3 (p170): 4.7.3 Measurement of magnetism
p4-7-4 (p171): 4.7.4 Experiment result using transmission microscope
p4-7-5 (p171): 4.7.5 Distribution of Dy2O3
p4-7-6 (p174): 4.7.6 Conclusions
p4-8 (p174): 4.8 Nanocrystalline Microstructure and Coercivity Mechanism Model of NdFeB Alloys with Nb and Ga
p4-8-1 (p175): 4.8.1 Experimental procedure
p4-8-2 (p175): 4.8.2 Magnetic properties measuring
p4-8-3 (p176): 4.8.3 Study of M?ssbauer effect
p4-8-4 (p178): 4.8.4 Study of nano-microstructure of NdFeB alloys with Nb
p4-8-5 (p178): 4.8.5 Dynamic cross and microstructure of the NdFeB alloys with Nb and Dy
p4-8-6 (p179): 4.8.6 Dynamic cross and microstructure of the NdFeB alloys with Nb,Ga,Co and Dy
p4-8-7 (p180): 4.8.7 Curie temperature of the NdFeB alloys with Nb
p4-8-8 (p182): 4.8.8 New coercivity mechanism model of multi-component NdFeB alloys
p4-8-9 (p183): 4.8.9 Conclusions
p4-9 (p184): 4.9 In Situ and Dynamic Observation on Magnetic and Phase Transformation of Nd15Fe78B7 Permanent Magnet at High Temperature
p4-9-1 (p185): 4.9.1 Preparation process of specimen and experiment method
p4-9-2 (p185): 4.9.2 Microstructure and phase in crystal boundary of NdFeB permanent magnet
p4-9-3 (p189): 4.9.3 Phase transformation of microstructure of B-rich phase at high temperature
p4-9-4 (p190): 4.9.4 Phase transformation of microstructure of Nd-rich filmy belt in Nd15Fe78B7 crystal boundary at high temperature
p4-9-5 (p193): 4.9.5 Phase transformation of Nd2Fe14B base phase of Nd15Fe78B7 alloy at high temperature
p4-9-6 (p194): 4.9.6 Conclusions
p4-10 (p195): 4.10 In Situ and Dynamic Observation on High Temperature Phase Transformation and Magnetism of Nd16Fe77B7 Permanent Magnetic Alloy
p4-10-1 (p196): 4.10.1 Samples preparationprocess and experimental method
p4-10-2 (p196): 4.10.2 The in situ and dynamic observation on nanometer microstructure and high temperature phase transformation
p4-10-3 (p201): 4.10.3 Function of cobalt in NdFeCoB alloy
p4-10-4 (p201): 4.10.4 Magnetic characteristic measurement result and analysis
p4-10-5 (p202): 4.10.5 Curie temperature measurement result
p4-10-6 (p202): 4.10.6 Phase analysis by X-ray diffraction,lattice constant and cell volume
p4-10-7 (p203): 4.10.7 Relationship between aging temperature and coercivity of Nd16Fe69Co8B7
p4-10-8 (p204): 4.10.8 Conclusions
p4-11 (p204): 4.11 Analysis on Lamella Phase of Grain Boundary in Microstructure of NdFeB Permanent Magnetic Alloy
p4-11-1 (p204): 4.11.1 Experimental method
p4-11-2 (p205): 4.11.2 Magnetism measurement
p4-11-3 (p205): 4.11.3 Analysis on result of the in situ and dynamic observation of samples
p4-12 (p215): 4.12 Quick Quenched NdFeB Permanent Magnetic Alloy
p4-12-1 (p215): 4.12.1 Sample preparation technique and experimental method
p4-12-2 (p215): 4.12.2 Measurement result of quick quenched magnet
p4-12-3 (p216): 4.12.3 Relationship between crystallization temperature and coercivity
p4-12-4 (p216): 4.12.4 Microstructure at room temperature
p4-12-5 (p216): 4.12.5 The in situ and dynamic observation on the non-crystal sample transferring to micro-crystal by HVEM
p4-12-6 (p217): 4.12.6 Conclusions
p4-13 (p217): 4.13 Stability of the Rare Earth Permanent Magnetic Alloy
p4-13-1 (p217): 4.13.1 Stability on temperature
p4-13-2 (p224): 4.13.2 Time stability
p4-13-3 (p224): 4.13.3 Chemical stability
p4-13-4 (p224): 4.13.4 Conclusions
p4-14 (p225): References
p5 (p231): Chapter 5 Developments and Prospect of the Rare Earth Permanent-magnet Alloys
p5-1 (p232): 5.1 Overseas General Development
p5-2 (p238): 5.2 Domestic General Development
p5-3 (p243): 5.3 Development Survey of Preparation Technology
p5-4 (p248): 5.4 Application and Expectation
p5-5 (p253): References
p6 (p257): Appendix
p6-1 (p257): Appendix 1 The Structure of Outer Electrons for Rare Earths
p6-2 (p258): Appendix 2 Atomic and Ionic Radius of Rare Earths
p6-3 (p259): Appendix 3 Physical Properties of Rare Earths
p6-4 (p261): Appendix 4 Fundamental Physical Constants
p6-5 (p262): Appendix 5 Conversion of magnetic quantity between SI and Gaussian units
p7 (p265): Index
p1-1 (p2): 1.1 Rare EarthPermanent-magnetAlloys
p1-1-1 (p2): 1.1.1 Rare earth
p1-1-2 (p2): 1.1.2 Classification and development of rare earth permanent-magnet alloys
p1-1-3 (p4): 1.1.3 Crystal structure of rare earth permanent-magnet alloys
p1-1-4 (p7): 1.1.4 Magnetic parameters of rare earth permanent-magnet alloys
p1-1-5 (p8): 1.1.5 Criterion of permanent-magnet alloys(materials)
p1-2 (p8): 1.2 Principle for Alloy Phase and Phase Transformation and Growth Rule of New Phase
p1-2-1 (p9): 1.2.1 Phase
p1-2-2 (p9): 1.2.2 Phase transformation
p1-2-3 (p9): 1.2.3 Alloy
p1-2-4 (p10): 1.2.4 Material
p1-2-5 (p10): 1.2.5 Alloy phase
p1-2-6 (p10): 1.2.6 Solid solution
p1-2-7 (p10): 1.2.7 Exsolution precipitation
p1-2-8 (p10): 1.2.8 Thermodynamic bases for phase transformation and classification
p1-2-9 (p17): 1.2.9 Single crystal
p1-2-10 (p17): 1.2.10 Single crystal superalloy
p1-2-11 (p18): 1.2.11 Enthalpy
p1-2-12 (p18): 1.2.12 Entropy
p1-2-13 (p19): 1.2.13 Latent heat of phase transformation
p1-2-14 (p19): 1.2.14 Driving force of phase transformation
p1-2-15 (p20): 1.2.15 Rule of growing up of new phase
p1-3 (p21): 1.3 Research Methods of the Magnetic Properties of Rare Earth Permanent Magnets
p1-4 (p25): Reterences
p2 (p27): Chapter 2 The First Generation Rare Earth Permanent-magnet Alloys
p2-1 (p28): 2.1 High temperature Phase Transition and Magnetic Properties of SmCo5 Permanent-magnet Alloys
p2-2 (p35): 2.2 The in Situ and Dynamic Observation on High Temperature Phase Transformation of SmCo5 Permanent Magnetic Alloyat 25-750℃
p2-2-1 (p36): 2.2.1 Magnetic measurement
p2-2-2 (p38): 2.2.2 Sample preparation and experiment method
p2-2-3 (p39): 2.2.3 Influence of annealing treated specimen on coercivity
p2-2-4 (p41): 2.2.4 The in situ and dynamic observation by 1000kV HVEM under heating condition
p2-2-5 (p50): 2.2.5 Discussion
p2-3 (p54): 2.3 Magnetism and the in Situ and Dynamic Observation of Permanent MagneticAlloy of SmCo5 byAnnealing at 600-1000℃
p2-3-1 (p55): 2.3.1 Specimen preparation and experimental method
p2-3-2 (p55): 2.3.2 Analysis on chemical composition of the SmCo5 permanent magnetic alloy
p2-3-3 (p55): 2.3.3 Magnetic measurement
p2-3-4 (p56): 2.3.4 Structure of magnetic domain
p2-3-5 (p57): 2.3.5 Irreversible loss of SmCo5 permanent magnetic alloy after annealing at 25-1000℃
p2-3-6 (p58): 2.3.6 Electronic energy spectrum experiment and analysis of SmCos permanent magnetic alloy
p2-3-7 (p61): 2.3.7 The in situ and dynamic observation on eutectoid decomposition of SmCo5 by electronic microscope
p2-3-8 (p62): 2.3.8 The in situ and dynamic observation of SmCo5 in thermal state using transmission electronic microscope
p2-3-9 (p63): 2.3.9 The in situ and dynamic observation on SmCo5 in thermal condition of 750-960℃ by Transmission Electronic Microscope
p2-3-10 (p65): 2.3.10 Discussion
p2-3-11 (p67): 2.3.11 Conclusions
p2-4 (p68): 2.4 Analysis on Variation ofthe Coercivity and Phase Transformation
p2-4-1 (p68): 2.4.1 Specimen preparation and experimental method
p2-4-2 (p69): 2.4.2 Experimental result and discussion
p2-4-3 (p74): 2.4.3 Conclusions
p2-5 (p74): 2.5 The Optic-electronic Spectrum Study on SmCo5 Permanent MagneticAlloy
p2-5-1 (p75): 2.5.1 Specimen preparation technique and experimental condition of optic-electronic energy spectrum
p2-5-2 (p75): 2.5.2 Investigation on surface composition of SmCo5
p2-5-3 (p76): 2.5.3 Atoms concentration variation of elements of samarium,cobalt and oxygen from surface to depth
p2-5-4 (p77): 2.5.4 Surface compound
p2-5-5 (p77): 2.5.5 Conclusions
p2-6 (p77): 2.6 Analysis on Magnetic Hysteresis Loop of SmCo5 Permanent MagneticAlloy
p2-6-1 (p78): 2.6.1 Specimen preparation technique,magnetic measurement and transmission microscope condition and experimental method
p2-6-2 (p78): 2.6.2 Analysis on chemical composition of three kinds of specimens
p2-6-3 (p80): 2.6.3 Analysis on preparation technique
p2-6-4 (p80): 2.6 4 Curve of magnetic performance and analysis at 77-550K
p2-6-5 (p81): 2.6.5 Observation and analysis on specimen using TEM
p2-6-6 (p82): 2.6.6 Conclusions
p2-7 (p82): 2.7 Magnetism of SmCo5 Permanent Alloy at 1.5-523K
p2-7-1 (p82): 2.7.1 Specimen preparation technique,magnetic measurement apparatus and experimental method
p2-7-2 (p83): 2.7.2 Magnetism measurement and curve of SmCo5 permanent magnetic alloy at 1.5K and 40K
p2-7-3 (p85): 2.7.3 Measurement of demagnetization curve and value of magnetic parameter at-196-250℃ by magnetic parameter measurement apparatus
p2-7-4 (p87): 2.7.4 Reversible temperature coefficient of SmCo5 at-196-250℃
p2-7-5 (p87): 2.7.5 Coercivity of SmCo5 at 475-1000℃
p2-7-6 (p89): 2.7.6 Discussion
p2-7-7 (p90): 2.7.7 Conclusions
p2-8 (p90): References
p3 (p95): Chapter 3 The Second Generation Rare Earth Permanent-magnet Alloys
p3-1 (p96): 3.1 Phase Precipitation,Phase Transformation at High Temperature and Magnetism of High Coercivity Sm(Co,Cu,Fe,Zr)7.4
p3-1-1 (p97): 3.1.1 Specimen preparation process and experimental method
p3-1-2 (p98): 3.1.2 Results of specimen magnetic measurement
p3-1-3 (p99): 3.1.3 Microtexture of the alloy at room temperature
p3-1-4 (p101): 3.1.4 The in situ and dynamic observation on precipitation,growth up and high temperature phase transformation of cellular structure from room temperature to high temperature
p3-1-5 (p116): 3.1.5 Conclusions
p3-2 (p118): 3.2 Function of Zirconium on Sm(Co,Cu,Fe,Zr)7.4 Permanent Magnetic Alloy&Observation and Analysis by Electron Microscope
p3-2-1 (p118): 3.2.1 Specimen preparation and experimental method
p3-2-2 (p118): 3.2.2 Research on function of Zirconium
p3-2-3 (p121): 3.2.3 Conclusions
p3-3 (p121): 3.3 Magnetism of High Coercivity Sm(Co,Cu,Fe,M)7 4Permanent Magnetic Alloy at 1.5-523K
p3-3-1 (p122): 3.3.1 Preparation of specimen and magnetism measurement apparatusz and measurement method
p3-3-2 (p122): 3.3.2 Measurement results and discussion
p3-3-3 (p125): 3.3.3 Conclusions
p3-4 (p126): References
p4 (p129): Chapter 4 The Third Generation Rare Earth Permanent Magnet
p4-1 (p129): 4.1 Improvement of the Properties of NdFeB Permanent Magnets Due to Element Substitutions
p4-2 (p133): 4.2 Magnetic Properties and the Occupancy of Co and Ga Atoms for NdFe(Co,Al,Ga)B Permanent-Magnetic Alloys
p4-2-1 (p133): 4.2.1 Preparation and method
p4-2-2 (p134): 4.2.2 Nd16Fe77-xCoxB7 alloy
p4-2-3 (p136): 4.2.3 Nd16Co10Fe67-yAlyB7 and Nd16Co16Fe61-yAlyB7 alloys
p4-2-4 (p138): 4.2.4 Nd16Co16Fe61-xGaxB7 alloy
p4-2-5 (p144): 4.2.5 Conclusions
p4-3 (p145): 4.3 The Studies of Main Phase Nd2Fe14B and Nd2(Fe,Co)14B in NdFeB Permanent-magnet Alloys
p4-3-1 (p145): 4.3.1 The preparation of samples and experimental methods
p4-3-2 (p145): 4.3.2 SEM analysis
p4-3-3 (p146): 4.3.3 The formation of Nd2Fe14B
p4-3-4 (p146): 4.3.4 M?ssbauer spectra at room temperature
p4-3-5 (p147): 4.3.5 Composition analysis and the studies of M?ssbauer spectra for Nd2(Fe,Co)14B
p4-3-6 (p147): 4.3.6 In situ and dynamic observation of TEM on Nd2Fe14B and Nd2(Fe,Co)14B
p4-3-7 (p150): 4.3.7 Conclusions
p4-4 (p150): 4.4 Studies on B-rich Phase in NdFeB Alloy
p4-4-1 (p151): 4.4.1 Preparation process and experimental method
p4-4-2 (p151): 4.4.2 The in situ and dynamic observation of Nd1.11Fe4B4 by TEM
p4-4-3 (p153): 4.4.3 Study on Nd1+εFe4B4 by X-Ray diffraction and M?ssbauer effect
p4-4-4 (p153): 4.4.4 Analysis on Nd1.1Fe4B4 phase
p4-4-5 (p155): 4.4.5 Relationship between B-rich phase and coercivity
p4-4-6 (p156): 4.4.6 Conclusions
p4-5 (p156): 4.5 Influence ofBoron Content in NdFeB on Nd2Fe14B Phase and Magnetic Property
p4-5-1 (p157): 4.5.1 Specimen preparation process and experimental method
p4-5-2 (p157): 4.5.2 Influence of boron content on alloy magnetic property and phase structure
p4-5-3 (p161): 4.5.3 Conclusions
p4-6 (p162): 4.6 High Curie Temperature NdFeCoGaB Permanent Magnetic Alloy
p4-6-1 (p162): 4.6.1 Preparation process and experiment method
p4-6-2 (p163): 4.6.2 Using cobalt to replace part of iron
p4-6-3 (p163): 4.6.3 Use Ga to replace part of iron in NdFeCoB alloy
p4-6-4 (p168): 4.6.4 Conclusions
p4-7 (p168): 4.7 Influence of Adding Element Dysprosium on Performance of NdFeB Alloy
p4-7-1 (p169): 4.7.1 Specimen preparation process and experimental method
p4-7-2 (p169): 4.7.2 Experiment result using SEM
p4-7-3 (p170): 4.7.3 Measurement of magnetism
p4-7-4 (p171): 4.7.4 Experiment result using transmission microscope
p4-7-5 (p171): 4.7.5 Distribution of Dy2O3
p4-7-6 (p174): 4.7.6 Conclusions
p4-8 (p174): 4.8 Nanocrystalline Microstructure and Coercivity Mechanism Model of NdFeB Alloys with Nb and Ga
p4-8-1 (p175): 4.8.1 Experimental procedure
p4-8-2 (p175): 4.8.2 Magnetic properties measuring
p4-8-3 (p176): 4.8.3 Study of M?ssbauer effect
p4-8-4 (p178): 4.8.4 Study of nano-microstructure of NdFeB alloys with Nb
p4-8-5 (p178): 4.8.5 Dynamic cross and microstructure of the NdFeB alloys with Nb and Dy
p4-8-6 (p179): 4.8.6 Dynamic cross and microstructure of the NdFeB alloys with Nb,Ga,Co and Dy
p4-8-7 (p180): 4.8.7 Curie temperature of the NdFeB alloys with Nb
p4-8-8 (p182): 4.8.8 New coercivity mechanism model of multi-component NdFeB alloys
p4-8-9 (p183): 4.8.9 Conclusions
p4-9 (p184): 4.9 In Situ and Dynamic Observation on Magnetic and Phase Transformation of Nd15Fe78B7 Permanent Magnet at High Temperature
p4-9-1 (p185): 4.9.1 Preparation process of specimen and experiment method
p4-9-2 (p185): 4.9.2 Microstructure and phase in crystal boundary of NdFeB permanent magnet
p4-9-3 (p189): 4.9.3 Phase transformation of microstructure of B-rich phase at high temperature
p4-9-4 (p190): 4.9.4 Phase transformation of microstructure of Nd-rich filmy belt in Nd15Fe78B7 crystal boundary at high temperature
p4-9-5 (p193): 4.9.5 Phase transformation of Nd2Fe14B base phase of Nd15Fe78B7 alloy at high temperature
p4-9-6 (p194): 4.9.6 Conclusions
p4-10 (p195): 4.10 In Situ and Dynamic Observation on High Temperature Phase Transformation and Magnetism of Nd16Fe77B7 Permanent Magnetic Alloy
p4-10-1 (p196): 4.10.1 Samples preparationprocess and experimental method
p4-10-2 (p196): 4.10.2 The in situ and dynamic observation on nanometer microstructure and high temperature phase transformation
p4-10-3 (p201): 4.10.3 Function of cobalt in NdFeCoB alloy
p4-10-4 (p201): 4.10.4 Magnetic characteristic measurement result and analysis
p4-10-5 (p202): 4.10.5 Curie temperature measurement result
p4-10-6 (p202): 4.10.6 Phase analysis by X-ray diffraction,lattice constant and cell volume
p4-10-7 (p203): 4.10.7 Relationship between aging temperature and coercivity of Nd16Fe69Co8B7
p4-10-8 (p204): 4.10.8 Conclusions
p4-11 (p204): 4.11 Analysis on Lamella Phase of Grain Boundary in Microstructure of NdFeB Permanent Magnetic Alloy
p4-11-1 (p204): 4.11.1 Experimental method
p4-11-2 (p205): 4.11.2 Magnetism measurement
p4-11-3 (p205): 4.11.3 Analysis on result of the in situ and dynamic observation of samples
p4-12 (p215): 4.12 Quick Quenched NdFeB Permanent Magnetic Alloy
p4-12-1 (p215): 4.12.1 Sample preparation technique and experimental method
p4-12-2 (p215): 4.12.2 Measurement result of quick quenched magnet
p4-12-3 (p216): 4.12.3 Relationship between crystallization temperature and coercivity
p4-12-4 (p216): 4.12.4 Microstructure at room temperature
p4-12-5 (p216): 4.12.5 The in situ and dynamic observation on the non-crystal sample transferring to micro-crystal by HVEM
p4-12-6 (p217): 4.12.6 Conclusions
p4-13 (p217): 4.13 Stability of the Rare Earth Permanent Magnetic Alloy
p4-13-1 (p217): 4.13.1 Stability on temperature
p4-13-2 (p224): 4.13.2 Time stability
p4-13-3 (p224): 4.13.3 Chemical stability
p4-13-4 (p224): 4.13.4 Conclusions
p4-14 (p225): References
p5 (p231): Chapter 5 Developments and Prospect of the Rare Earth Permanent-magnet Alloys
p5-1 (p232): 5.1 Overseas General Development
p5-2 (p238): 5.2 Domestic General Development
p5-3 (p243): 5.3 Development Survey of Preparation Technology
p5-4 (p248): 5.4 Application and Expectation
p5-5 (p253): References
p6 (p257): Appendix
p6-1 (p257): Appendix 1 The Structure of Outer Electrons for Rare Earths
p6-2 (p258): Appendix 2 Atomic and Ionic Radius of Rare Earths
p6-3 (p259): Appendix 3 Physical Properties of Rare Earths
p6-4 (p261): Appendix 4 Fundamental Physical Constants
p6-5 (p262): Appendix 5 Conversion of magnetic quantity between SI and Gaussian units
p7 (p265): Index
元数据中的注释
related_files:
filepath:稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文=Rare Earth Permanent-Magnet Alloys's High Temperature Phase Transformation_ In Situ and Dynamic Observation and Its Application in Material Design_13748553.zip — md5:158b2bf3b21a5889f3a938bb3f59969c — filesize:41858679
filepath:稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文=Rare Earth Permanent-Magnet Alloys's High Temperature Phase Transformation_ In Situ and Dynamic Observation and Its Application in Material Design_13748553.zip — md5:a40cb4037bb2f63ec90d578155dfff9d — filesize:41858679
filepath:/读秀/读秀4.0/读秀/4.0/数据库17-1/稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文=Rare Earth Permanent-Magnet Alloys's High Temperature Phase Transformation_ In Situ and Dynamic Observation and Its Application in Material Design_13748553.zip
filepath:稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文=Rare Earth Permanent-Magnet Alloys's High Temperature Phase Transformation_ In Situ and Dynamic Observation and Its Application in Material Design_13748553.zip — md5:158b2bf3b21a5889f3a938bb3f59969c — filesize:41858679
filepath:稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文=Rare Earth Permanent-Magnet Alloys's High Temperature Phase Transformation_ In Situ and Dynamic Observation and Its Application in Material Design_13748553.zip — md5:a40cb4037bb2f63ec90d578155dfff9d — filesize:41858679
filepath:/读秀/读秀4.0/读秀/4.0/数据库17-1/稀土永磁合金高温相变 原位动态观察及在材料设计中的应用 英文=Rare Earth Permanent-Magnet Alloys's High Temperature Phase Transformation_ In Situ and Dynamic Observation and Its Application in Material Design_13748553.zip
备用描述
The Process Of High Temperature Phase Transition Of Rare Earth Permanent-magnet Alloys Is Revealed By Photographs Taken By High Voltage Tem. The Relationship Between The Formation Of Nanocrystal And Magnetic Properties Is Discussed In Detail, Which Effects Alloys Composition And Preparation Process. The Experiment Results Verified Some Presumptions, And Were Valuable For Subsequent Scientific Research And Creating New Permanent-magnet Alloys. The Publication Is Intended For Researchers, Engineers And Managers In The Field Of Material Science, Metallurgy, And Physics. Prof. Shuming Pan Is Senior Engineer Of Beijing General Research Institute Of Non-ferrous Metal. The First Generation Rare Earth Permanent-magnet Alloys-smco5 -- The Second Generation Rare Earth Permanent-magnet Alloys-sm(co, Cu, Fe, Zr)7.4 -- The Third Generation Rare Earth Permanent-magnet Alloys-ndfeb -- Development And Prospect Of Rare Earth Permanent-magnet Alloys. By Shuming Pan.
备用描述
Keine Beschreibung vorhanden.
Erscheinungsdatum: 26.02.2014
Erscheinungsdatum: 26.02.2014
开源日期
2024-06-13
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.