Interpolation Spaces An Introduction = 插值空间引论 🔍
J.BERGH,J.LOFSTROM著, ( )J.Bergh, ()J.Lofstrom著, Rgh Be, Fstrom Lo, J. Bergh, J. Lofstrom著, Rgh Be, Fstrom Lo, Jöran Bergh 北京/西安:世界图书出版公司, 2003, 2003
英语 [en] · 中文 [zh] · PDF · 27.7MB · 2003 · 📗 未知类型的图书 · 🚀/duxiu/zlibzh · Save
描述
1 (p1): Chapter 1.Some Classical Theorems 1 (p1-1): 1.1.The Riesz-Thorin Theorem 5 (p1-2): 1.2.Applications of the Riesz-Thorin Theorem 6 (p1-3): 1.3.The Marcinkiewicz Theorem 11 (p1-4): 1.4.An Application of the Marcinkiewicz Theorem 12 (p1-5): 1.5.Two Classical Approximation Results 13 (p1-6): 1.6.Exercises 19 (p1-7): 1.7.Notes and Comment 22 (p2): Chapter 2.General Properties of Interpolation Spaces 22 (p2-1): 2.1.Categories and Functors 23 (p2-2): 2.2.Normed Vector Spaces 24 (p2-3): 2.3.Couples of Spaces 26 (p2-4): 2.4.Definition of Interpolation Spaces 29 (p2-5): 2.5.The Aronszajn-Gagliardo Theorem 31 (p2-6): 2.6.A Necessary Condition for Interpolation 32 (p2-7): 2.7.A Duality Theorem 33 (p2-8): 2.8.Exercises 36 (p2-9): 2.9.Notes and Comment 38 (p3): Chapter 3.The Real Interpolation Method 38 (p3-1): 3.1.The K-Method 42 (p3-2): 3.2.The J-Method 44 (p3-3): 3.3.The Equivalence Theorem 46 (p3-4): 3.4.Simple Properties of? 48 (p3-5): 3.5.The Reiteration Theorem 52 (p3-6): 3.6.A Formula for the K-Functional 53 (p3-7): 3.7.The Duality Theorem 55 (p3-8): 3.8.A Compactness Theorem 57 (p3-9): 3.9.An Extremal Property of the Real Method 59 (p3-10): 3.10.Quasi-Normed Abelian Groups 63 (p3-11): 3.11.The Real Interpolation Method for Quasi-Normed Abelian Groups 70 (p3-12): 3.12.Some Other Equivalent Real Interpolation Methods 75 (p3-13): 3.13.Exercises 82 (p3-14): 3.14.Notes and Comment 87 (p4): Chapter 4.The Complex Interpolation Method 87 (p4-1): 4.1.Definition of the Complex Method 91 (p4-2): 4.2.Simple Properties of ? 93 (p4-3): 4.3.The Equivalence Theorem 96 (p4-4): 4.4.Multilinear Interpolation 98 (p4-5): 4.5.The Duality Theorem 101 (p4-6): 4.6.The Reiteration Theorem 102 (p4-7): 4.7.On the Connection with the Real Method 104 (p4-8): 4.8.Exercises 105 (p4-9): 4.9.Notes and Comment 106 (p5): Chapter...
备用文件名
zlibzh/no-category/J.BERGH,J.LOFSTROM著, ( )J.Bergh, ()J.Lofstrom著, Rgh Be, Fstrom Lo, J. Bergh, J. Lofstrom著, Rgh Be, Fstrom Lo, Jöran Bergh/插值空间引论_44480547.pdf
备选标题
Interpolation Spaces: An Introduction (Grundlehren der mathematischen Wissenschaften)
备选作者
Jöran Bergh, Jörgen Löfström
备选作者
Joran Bergh; Jorgen Lofstrom
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
World Publishing Corporation
备用出版商
Springer Berlin Heidelberg
备用出版商
世界图书出版公司北京公司
备用出版商
Copernicus
备用出版商
Telos
备用版本
Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Berlin, 1976
备用版本
Grundlehren der mathematischen Wissenschaften -- 223 Einzeldarstellungen, 223, Berlin, West Berlin, 1976
备用版本
Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Reprint, Berlin, 2003
备用版本
Grundlehren der mathematischen Wissenschaften ;, 223, Berlin, New York, West Berlin, 1976
备用版本
Springer Nature, Berlin, Heidelberg, 2012
备用版本
United States, United States of America
备用版本
China, People's Republic, China
备用版本
Ying yin ban, Beijing, 2003
备用版本
Softcover reprint of, 1976
备用版本
Di 1 ban, Beijing, 2003
备用版本
Germany, Germany
备用版本
Dec 20, 1976
元数据中的注释
Bookmarks: p1 (p1): Chapter 1.Some Classical Theorems
p1-1 (p1): 1.1.The Riesz-Thorin Theorem
p1-2 (p5): 1.2.Applications of the Riesz-Thorin Theorem
p1-3 (p6): 1.3.The Marcinkiewicz Theorem
p1-4 (p11): 1.4.An Application of the Marcinkiewicz Theorem
p1-5 (p12): 1.5.Two Classical Approximation Results
p1-6 (p13): 1.6.Exercises
p1-7 (p19): 1.7.Notes and Comment
p2 (p22): Chapter 2.General Properties of Interpolation Spaces
p2-1 (p22): 2.1.Categories and Functors
p2-2 (p23): 2.2.Normed Vector Spaces
p2-3 (p24): 2.3.Couples of Spaces
p2-4 (p26): 2.4.Definition of Interpolation Spaces
p2-5 (p29): 2.5.The Aronszajn-Gagliardo Theorem
p2-6 (p31): 2.6.A Necessary Condition for Interpolation
p2-7 (p32): 2.7.A Duality Theorem
p2-8 (p33): 2.8.Exercises
p2-9 (p36): 2.9.Notes and Comment
p3 (p38): Chapter 3.The Real Interpolation Method
p3-1 (p38): 3.1.The K-Method
p3-2 (p42): 3.2.The J-Method
p3-3 (p44): 3.3.The Equivalence Theorem
p3-4 (p46): 3.4.Simple Properties of?
p3-5 (p48): 3.5.The Reiteration Theorem
p3-6 (p52): 3.6.A Formula for the K-Functional
p3-7 (p53): 3.7.The Duality Theorem
p3-8 (p55): 3.8.A Compactness Theorem
p3-9 (p57): 3.9.An Extremal Property of the Real Method
p3-10 (p59): 3.10.Quasi-Normed Abelian Groups
p3-11 (p63): 3.11.The Real Interpolation Method for Quasi-Normed Abelian Groups
p3-12 (p70): 3.12.Some Other Equivalent Real Interpolation Methods
p3-13 (p75): 3.13.Exercises
p3-14 (p82): 3.14.Notes and Comment
p4 (p87): Chapter 4.The Complex Interpolation Method
p4-1 (p87): 4.1.Definition of the Complex Method
p4-2 (p91): 4.2.Simple Properties of ?
p4-3 (p93): 4.3.The Equivalence Theorem
p4-4 (p96): 4.4.Multilinear Interpolation
p4-5 (p98): 4.5.The Duality Theorem
p4-6 (p101): 4.6.The Reiteration Theorem
p4-7 (p102): 4.7.On the Connection with the Real Method
p4-8 (p104): 4.8.Exercises
p4-9 (p105): 4.9.Notes and Comment
p5 (p106): Chapter 5.Interpolation of Lp-Spaces
p5-1 (p106): 5.1.Interpolation of Lp-Spaces:the Complex Method
p5-2 (p108): 5.2.Interpolation of Lp-Spaces:the Real Method
p5-3 (p113): 5.3.Interpolation of Lorentz Spaces
p5-4 (p114): 5.4.Interpolation of Lp-Spaces with Change of Measure:p0=p1
p5-5 (p119): 5.5.Interpolation of Lp-Spaces with Change of Measure:p0≠p1
p5-6 (p121): 5.6.Interpolation of Lp-Spaces of Vector-Valued Sequences
p5-7 (p124): 5.7.Exercises
p5-8 (p128): 5.8.Notes and Comment
p6 (p131): Chapter 6.Interpolation of Sobolev and Besov Spaces
p6-1 (p131): 6.1.Fourier Multipliers
p6-2 (p139): 6.2.Definition of the Sobolev and Besov Spaces
p6-3 (p146): 6.3.The Homogeneous Sobolev and Besov Spaces
p6-4 (p149): 6.4.Interpolation of Sobolev and Besov Spaces
p6-5 (p153): 6.5.An Embedding Theorem
p6-6 (p155): 6.6.A Trace Theorem
p6-7 (p156): 6.7.Interpolation of Semi-Groups of Operators
p6-8 (p161): 6.8.Exercises
p6-9 (p169): 6.9.Notes and Comment
p7 (p174): Chapter 7.Applications to Approximation Theory
p7-1 (p174): 7.1.Approximation Spaces
p7-2 (p179): 7.2.Approximation of Functions
p7-3 (p181): 7.3.Approximation of Operators
p7-4 (p182): 7.4.Approximation by Difference Operators
p7-5 (p186): 7.5.Exercises
p7-6 (p193): 7.6.Notes and Comment
p8 (p196): References
p9 (p205): List of Symbols
p10 (p206): Subject Index
元数据中的注释
related_files:
filepath:插值空间引论=INTERPOLATION SPACES AN INTRODUCTION_13961055.zip — md5:1440239a0d58be3a06cb28ca8826251d — filesize:21368124
filepath:13961055.uvz — md5:2bd7e523336e7f3a004602e4756d1092 — filesize:21312322
filepath:13961055.zip — md5:9bc9d75df7624cd4ca79581297a12858 — filesize:21367435
filepath:13961055.zip — md5:f64109b31i621ab296826d3f43d295fd — filesize:21367435
filepath:/读秀/读秀4.0/读秀/4.0/数据库32-1/13961055.zip
元数据中的注释
'The works of Jaak Peetre constitute the main body of this treatise.' - preface.
元数据中的注释
Bibliography: p. [196]-204.
Includes index.
备用描述
The works of Jaak Peetre constitute the main body of this treatise. Important contributors are also J. L. Lions and A. P. Calderon, not to mention several others. We, the present authors, have thus merely compiled and explained the works of others (with the exception of a few minor contributions of our own). Let us mention the origin of this treatise. A couple of years ago, J. Peetre suggested to the second author, J. Lofstrom, writing a book on interpolation theory and he most generously put at Lofstrom's disposal an unfinished manu­ script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom prepared a first rough, but relatively complete manuscript of lecture notes. This was then partly rewritten and thouroughly revised by the first author, J. Bergh, who also prepared the notes and comment and most of the exercises. Throughout the work, we have had the good fortune of enjoying Jaak Peetre's kind patronage and invaluable counsel. We want to express our deep gratitude to him. Thanks are also due to our colleagues for their support and help. Finally, we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund for their expert typing of our manuscript.
备用描述
Jöran Bergh, Jörgen Löfström. Includes Index. Bibliography: P. [196]-204.
开源日期
2024-06-13
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。