upload/misc/ThoseBooks/Science & Math/Mathematics/Second Order Differential Equations Special Functions and Their Classification 2010th Edition (9781441970190, 2010)/9781441970190(1).pdf
Second Order Differential Equations : Special Functions and Their Classification 🔍
Gerhard Kristensson
Springer New York, Springer Nature (Textbooks & Major Reference Works), New York, NY, 2010
英语 [en] · PDF · 2.5MB · 2010 · 📗 未知类型的图书 · 🚀/upload · Save
描述
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincaré-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online.
备选作者
Kristensson, Gerhard
备选作者
Adobe Acrobat 9.3.3
备用出版商
Springer US
备用版本
United States, United States of America
备用版本
New York, New York State, 2010
备用版本
2010, PS, 2010
元数据中的注释
producers:
Adobe Acrobat Pro 9.3.3
Adobe Acrobat Pro 9.3.3
元数据中的注释
Includes bibliographical references (p. 215-216) and index.
备用描述
cover-large 1
front-matter 2
Second Order Differential Equations 4
Preface 8
Contents 10
fulltext 14
Chapter 1: Introduction 14
fulltext_2 16
Chapter 2: Basic properties of the solutions 16
2.1 ODE of second order 16
2.1.1 Standard forms 16
2.1.2 Classification of points 17
2.2 The Wronskian 18
2.3 Solution at a regular point 19
2.3.1 The second solution 24
2.4 Solution at a regular singular point 25
2.4.1 The indicial equation 26
2.4.2 Convergence of the solution 30
2.4.3 The second solution—exceptional case 33
2.5 Solution at a regular singular point at infinity 37
Problems 39
fulltext_3-4 42
Chapter 3: Equations of Fuchsian type 42
3.1 Regular singular point at infinity 42
3.2 Regular point at infinity 46
3.3 The displacement theorem 49
Problems 54
fulltext_4-3 56
Chapter 4: Equations with one to four regular singular points 56
4.1 ODE with one regular singular point 56
4.1.1 Regular singular point at infinity 56
4.1.2 Regular point at infinity 57
4.2 ODE with two regular singular points 58
4.2.1 One regular singular point at infinity 58
4.2.2 Regular point at infinity 59
4.2.3 Confluence 60
4.3 ODE with three regular singular points 62
4.3.1 One regular singular point at infinity 62
4.3.2 Regular point at infinity 63
4.3.2.1 Displacements 64
4.3.2.2 Substitutions 65
4.3.2.3 Connection to a regular singular point at infinity 68
4.4 ODE with four regular singular points 69
4.4.1 One regular singular point at infinity 69
4.4.2 Regular point at infinity 70
Problems 71
fulltext_5 74
Chapter 5: The hypergeometric differential equation 74
5.1 Basic properties 74
5.2 Hypergeometric series 75
5.3 Recursion and differentiation formulae 81
5.4 Kummer’s solutions to hypergeometric differential equation 85
5.5 Integral representation of F(α;β;γ;z) 90
5.6 Barnes’ integral representation 93
5.6.1 Relation between F(·; ; ·; z) and F(·; ·; ·;1 – z) 102
5.7 Quadratic transformations 104
5.8 Hypergeometric polynomials (Jacobi) 105
5.8.1 Definition of the Jacobi polynomials 106
5.8.2 Generating function 109
5.8.3 Rodrigues’ generalized function 111
5.8.4 Orthogonality 112
5.8.5 Integral representation (Schläfli) 113
5.8.6 Recursion relation 114
Problems 117
fulltext_6-7 120
Chapter 6: Legendre functions and related functions 120
6.1 Legendre functions of first and second kind 120
6.2 Integral representations 122
6.3 Associated Legendre functions 132
Problems 134
fulltext_7-8 136
Chapter 7: Confluent hypergeometric functions 136
7.1 Confluent hypergeometric functions—first kind 136
7.1.1 Bessel functions 138
7.1.2 Integral representations 139
7.1.3 Laguerre polynomials 143
7.1.4 Hermite polynomials 145
7.2 Confluent hypergeometric functions—second kind 145
7.2.1 Integral representations 146
7.2.2 Bessel functions —revisited 149
7.3 Solutions with three singular points—a summary 150
7.4 Generalized hypergeometric series 151
Problems 151
fulltext_8-6 154
Chapter 8: Heun’s differential equation 154
8.1 Basic properties 154
8.2 Power series solution 156
8.3 Polynomial solution 159
8.4 Solution in hypergeometric polynomials 160
8.4.1 Asymptotic properties of the polynomials yn(z) 161
8.4.2 Asymptotic properties of the coefficients cn 164
8.4.3 Domain of convergence 169
8.5 Confluent Heun’s equation 171
8.6 Special examples 172
8.6.1 Lamé’s differential equation 172
8.6.2 Differential equation for spheroidal functions 173
8.6.3 Mathieu’s differential equation 174
Problems 174
back-matter 176
Appendix A: The gamma function and related functions 176
A.1 The gamma function Γ(z) 176
A.2 Estimates of the gamma function 179
A.3 The Appell symbol 186
A.4 Psi (digamma) function 188
A.5 Binomial coefficient 188
A.6 The beta function B(x;y) 189
A.7 Euler–Mascheroni constant 189
Problems 190
Appendix B: Difference equations 192
B.1 Second order recursion relations 192
B.2 Poincaré–Perron theory 195
B.3 Asymptotic behavior of recursion relations 198
B.4 Estimates of some sequences and series 206
B.4.1 Riemann zeta function 207
B.4.2 The sum Σnk=1 k–1 208
B.4.3 Convergence of a sequence 210
Appendix C: Partial fractions 213
Appendix D: Circles and ellipses in the complex plane 214
D.1 Equation of the circle 214
D.1.1 Harmonic circles 215
D.2 Equation of the ellipse 216
Appendix E: Elementary and special functions 220
E.1 Hypergeometric function 2F1(α;β;γ;z) 220
E.2 Confluent functions 1F1(α;γ;z) 222
E.2.1 Error functions 223
E.3 Confluent functions 0F1(γ;z) 223
Appendix F: Notation 224
References 225
Index 227
front-matter 2
Second Order Differential Equations 4
Preface 8
Contents 10
fulltext 14
Chapter 1: Introduction 14
fulltext_2 16
Chapter 2: Basic properties of the solutions 16
2.1 ODE of second order 16
2.1.1 Standard forms 16
2.1.2 Classification of points 17
2.2 The Wronskian 18
2.3 Solution at a regular point 19
2.3.1 The second solution 24
2.4 Solution at a regular singular point 25
2.4.1 The indicial equation 26
2.4.2 Convergence of the solution 30
2.4.3 The second solution—exceptional case 33
2.5 Solution at a regular singular point at infinity 37
Problems 39
fulltext_3-4 42
Chapter 3: Equations of Fuchsian type 42
3.1 Regular singular point at infinity 42
3.2 Regular point at infinity 46
3.3 The displacement theorem 49
Problems 54
fulltext_4-3 56
Chapter 4: Equations with one to four regular singular points 56
4.1 ODE with one regular singular point 56
4.1.1 Regular singular point at infinity 56
4.1.2 Regular point at infinity 57
4.2 ODE with two regular singular points 58
4.2.1 One regular singular point at infinity 58
4.2.2 Regular point at infinity 59
4.2.3 Confluence 60
4.3 ODE with three regular singular points 62
4.3.1 One regular singular point at infinity 62
4.3.2 Regular point at infinity 63
4.3.2.1 Displacements 64
4.3.2.2 Substitutions 65
4.3.2.3 Connection to a regular singular point at infinity 68
4.4 ODE with four regular singular points 69
4.4.1 One regular singular point at infinity 69
4.4.2 Regular point at infinity 70
Problems 71
fulltext_5 74
Chapter 5: The hypergeometric differential equation 74
5.1 Basic properties 74
5.2 Hypergeometric series 75
5.3 Recursion and differentiation formulae 81
5.4 Kummer’s solutions to hypergeometric differential equation 85
5.5 Integral representation of F(α;β;γ;z) 90
5.6 Barnes’ integral representation 93
5.6.1 Relation between F(·; ; ·; z) and F(·; ·; ·;1 – z) 102
5.7 Quadratic transformations 104
5.8 Hypergeometric polynomials (Jacobi) 105
5.8.1 Definition of the Jacobi polynomials 106
5.8.2 Generating function 109
5.8.3 Rodrigues’ generalized function 111
5.8.4 Orthogonality 112
5.8.5 Integral representation (Schläfli) 113
5.8.6 Recursion relation 114
Problems 117
fulltext_6-7 120
Chapter 6: Legendre functions and related functions 120
6.1 Legendre functions of first and second kind 120
6.2 Integral representations 122
6.3 Associated Legendre functions 132
Problems 134
fulltext_7-8 136
Chapter 7: Confluent hypergeometric functions 136
7.1 Confluent hypergeometric functions—first kind 136
7.1.1 Bessel functions 138
7.1.2 Integral representations 139
7.1.3 Laguerre polynomials 143
7.1.4 Hermite polynomials 145
7.2 Confluent hypergeometric functions—second kind 145
7.2.1 Integral representations 146
7.2.2 Bessel functions —revisited 149
7.3 Solutions with three singular points—a summary 150
7.4 Generalized hypergeometric series 151
Problems 151
fulltext_8-6 154
Chapter 8: Heun’s differential equation 154
8.1 Basic properties 154
8.2 Power series solution 156
8.3 Polynomial solution 159
8.4 Solution in hypergeometric polynomials 160
8.4.1 Asymptotic properties of the polynomials yn(z) 161
8.4.2 Asymptotic properties of the coefficients cn 164
8.4.3 Domain of convergence 169
8.5 Confluent Heun’s equation 171
8.6 Special examples 172
8.6.1 Lamé’s differential equation 172
8.6.2 Differential equation for spheroidal functions 173
8.6.3 Mathieu’s differential equation 174
Problems 174
back-matter 176
Appendix A: The gamma function and related functions 176
A.1 The gamma function Γ(z) 176
A.2 Estimates of the gamma function 179
A.3 The Appell symbol 186
A.4 Psi (digamma) function 188
A.5 Binomial coefficient 188
A.6 The beta function B(x;y) 189
A.7 Euler–Mascheroni constant 189
Problems 190
Appendix B: Difference equations 192
B.1 Second order recursion relations 192
B.2 Poincaré–Perron theory 195
B.3 Asymptotic behavior of recursion relations 198
B.4 Estimates of some sequences and series 206
B.4.1 Riemann zeta function 207
B.4.2 The sum Σnk=1 k–1 208
B.4.3 Convergence of a sequence 210
Appendix C: Partial fractions 213
Appendix D: Circles and ellipses in the complex plane 214
D.1 Equation of the circle 214
D.1.1 Harmonic circles 215
D.2 Equation of the ellipse 216
Appendix E: Elementary and special functions 220
E.1 Hypergeometric function 2F1(α;β;γ;z) 220
E.2 Confluent functions 1F1(α;γ;z) 222
E.2.1 Error functions 223
E.3 Confluent functions 0F1(γ;z) 223
Appendix F: Notation 224
References 225
Index 227
备用描述
Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusing on the systematic treatment and classification of these solutions. -- Back Cover.
Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains an alternative way of analyzing the asymptomatic behavior of solutions of difference equations. -- Back Cover.
This textbook is appropriate For advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differential Equations. A solutions manual is available online at springer.com. --Back Cover.
Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincare-Perron theory, and the appendix also contains an alternative way of analyzing the asymptomatic behavior of solutions of difference equations. -- Back Cover.
This textbook is appropriate For advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differential Equations. A solutions manual is available online at springer.com. --Back Cover.
开源日期
2024-06-27
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.