纳米相和纳米结构材料——结构和性能表征手册 🔍
王中林,刘义,张泽主编, edited by Zhong Lin Wang, Yi Liu, and Ze Zhang, Zhong Lin Wang, Ze Zhang, Yi Liu, Zhong Lin Wang, Yi Liu, Ze Zhang
北京:清华大学出版社, 2002, 2002
英语 [en] · 中文 [zh] · PDF · 42.7MB · 2002 · 📗 未知类型的图书 · 🚀/duxiu/zlibzh · Save
描述
1 (p1): 1 X-ray and Neutron Scattering1 (p1-2): 1.1 Introduction4 (p1-3): 1.2 X-ray and Neutron Diffraction14 (p1-4): 1.3 Inelastic Neutron Scattering21 (p1-5): 1.4 Small Angle Scattering24 (p1-6): 1.5 Concluding Remarks25 (p1-7): References29 (p2): 2 Transmission Electron Microscopy and Spectroscopy29 (p2-2): 2.1 Major Components of a Transmission Electron Microscope31 (p2-3): 2.2 Atomic Resolution Lattice Imaging of Crystalline Specimens31 (p2-4): 2.2.1 Phase Contrast32 (p2-5): 2.2.2 Abbe’s Imaging Theory34 (p2-6): 2.2.3 Image Interpretation of Very Thin Samples34 (p2-7): 2.2.4 Image Simulation37 (p2-8): 2.3 Faceted Shapes of Nanocrystals37 (p2-9): 2.3.1 Polyhedral Shapes of Nanoparticles41 (p2-10): 2.3.2 Twinning Structure and Stacking Faults42 (p2-11): 2.3.3 Decahedral and lcosahedral Particles43 (p2-12): 2.3.4 Nucleation and Growth of Nanoparticles46 (p2-13): 2.4 Electron Holography48 (p2-14): 2.5 Lorentz Microscopy48 (p2-15): 2.5.1 Principle of Lorentz Microscopy49 (p2-16): 2.5.3 Fresnel Lorentz Microscopy49 (p2-17): 2.5.2 Elimination/Reduction of Magnetic Field from Objective Lens50 (p2-18): 2.5.4 Foucault Lorentz Microscopy51 (p2-19): 2.5.5 Differential Phase Contrast Mode of Lorentz Microscopy in STEM52 (p2-20): 2.6 Nanodiffraction53 (p2-21): 2.6.1 Optics for Nanodiffraction53 (p2-22): 2.6.2 Experimental Procedures to Obtain a Nanodiffraction Pattern54 (p2-23): 2.6.3 Some Applications61 (p2-24): 2.7 In situ TEM and Nanomeasurements62 (p2-25): 2.7.1 Thermodynamic Properties of Nanocrystals68 (p2-26): 2.7.2 Nanomeasurement of Electrical Transport in Quantum Wires70 (p2-27): 2.7.3 Nanomeasurement of Mechanical Properties of Fiber-Like Structures71 (p2-28): 2.7.4 Femtogram Nanobalance of a Single Fine Particle72 (p2-29): 2.7.5 Electron Field Emission from a Single Carbon Nanotube75 (p2-30): 2.8 Electron Energy Loss Spectroscopy of Nanoparticles75 (p2-31): 2.8.1 Valence Excitation Spectroscopy77 (p2-32): 2.8.2 Quantitative...
备用文件名
zlibzh/no-category/王中林,刘义,张泽主编, edited by Zhong Lin Wang, Yi Liu, and Ze Zhang, Zhong Lin Wang, Ze Zhang, Yi Liu, Zhong Lin Wang, Yi Liu, Ze Zhang/纳米相和纳米结构材料-结构和性能表征手册_30426332.pdf
备选标题
Handbook of Nanophase and Nanostructured Materials : Volume I: Synthesis, Volume II: Characterization, Volume III: Materials Systems and Applications I, Volume IV: Materials Systems and Applications II
备选标题
纳米相和纳米结构材料. 应用(I)手册 = Handbook of Nanophase and Nanostructured Materials--Materials Systemds and Applications(I)
备选标题
纳米相和纳米结构材料--合成手册 : [英文版] Na mi xiang he na mi jie gou cai liao -- he cheng shou ce : [ Ying wen ban
备选标题
Handbook of Nanophase and Nanostructured Materials Vol. 4 : Materials Systems and Applications II
备选标题
Handbook Of Nanophase And Nanostructured Materials Vol. 3 : Materials Systems And Applications I
备选标题
Handbook of nanophase and nanostructured materials / Vol.2 Characterization
备选标题
Handbook Of Nanophase And Nanostructured Materials Vol. 1 : Synthesis
备选标题
Handbook of nanophase and nanostructured materials. Vol. 3, Synthesis
备选标题
Handbook of nanophase and nanostructured materials = 纳米相和纳米结构材料 (II)
备选标题
纳米相和纳米结构材料应用 1 手册 英文版
备选标题
纳米相和纳米结构材料应用 2 手册 英文版
备选标题
纳米相和纳米结构材料应用(II)手册
备选作者
Wang, Zhong Lin., Liu, Yi, Zhang, Ze
备选作者
王中林主编; 王中林
备用出版商
Kluwer Academic / Plenum Publishers ; Tsinghua University Press
备用出版商
清华大学出版社 Qing hua da xue chu ban she
备用出版商
Springer Science & Business Media
备用出版商
Da Capo Press, Incorporated
备用出版商
Qinghua University Press
备用出版商
Hachette Books
备用出版商
Hachette GO
备用版本
Springer Nature (Textbooks & Major Reference Works), New York, 2003
备用版本
21 Shi ji ke ji qian yan cong shu, Di 1 ban, 北京 Beijing, 2002
备用版本
SpringerLINK ebook collection, New York, ©2003
备用版本
New York, New York State, October 1, 2002
备用版本
United States, United States of America
备用版本
Springer Nature, [Boston?], 2003
备用版本
China, People's Republic, China
备用版本
1 edition, October 1, 2002
备用版本
1 edition, August 1, 2002
备用版本
New York, [Beijing, 2003
备用版本
New York; London, 2003
备用版本
Boston, MA, 2003
备用版本
Bei jing, 2002
备用版本
1, 2003
元数据中的注释
Bookmarks: p1 (p1): 1 X-ray and Neutron Scattering
p1-2 (p1): 1.1 Introduction
p1-3 (p4): 1.2 X-ray and Neutron Diffraction
p1-4 (p14): 1.3 Inelastic Neutron Scattering
p1-5 (p21): 1.4 Small Angle Scattering
p1-6 (p24): 1.5 Concluding Remarks
p1-7 (p25): References
p2 (p29): 2 Transmission Electron Microscopy and Spectroscopy
p2-2 (p29): 2.1 Major Components of a Transmission Electron Microscope
p2-3 (p31): 2.2 Atomic Resolution Lattice Imaging of Crystalline Specimens
p2-4 (p31): 2.2.1 Phase Contrast
p2-5 (p32): 2.2.2 Abbe’s Imaging Theory
p2-6 (p34): 2.2.3 Image Interpretation of Very Thin Samples
p2-7 (p34): 2.2.4 Image Simulation
p2-8 (p37): 2.3 Faceted Shapes of Nanocrystals
p2-9 (p37): 2.3.1 Polyhedral Shapes of Nanoparticles
p2-10 (p41): 2.3.2 Twinning Structure and Stacking Faults
p2-11 (p42): 2.3.3 Decahedral and lcosahedral Particles
p2-12 (p43): 2.3.4 Nucleation and Growth of Nanoparticles
p2-13 (p46): 2.4 Electron Holography
p2-14 (p48): 2.5 Lorentz Microscopy
p2-15 (p48): 2.5.1 Principle of Lorentz Microscopy
p2-16 (p49): 2.5.3 Fresnel Lorentz Microscopy
p2-17 (p49): 2.5.2 Elimination/Reduction of Magnetic Field from Objective Lens
p2-18 (p50): 2.5.4 Foucault Lorentz Microscopy
p2-19 (p51): 2.5.5 Differential Phase Contrast Mode of Lorentz Microscopy in STEM
p2-20 (p52): 2.6 Nanodiffraction
p2-21 (p53): 2.6.1 Optics for Nanodiffraction
p2-22 (p53): 2.6.2 Experimental Procedures to Obtain a Nanodiffraction Pattern
p2-23 (p54): 2.6.3 Some Applications
p2-24 (p61): 2.7 In situ TEM and Nanomeasurements
p2-25 (p62): 2.7.1 Thermodynamic Properties of Nanocrystals
p2-26 (p68): 2.7.2 Nanomeasurement of Electrical Transport in Quantum Wires
p2-27 (p70): 2.7.3 Nanomeasurement of Mechanical Properties of Fiber-Like Structures
p2-28 (p71): 2.7.4 Femtogram Nanobalance of a Single Fine Particle
p2-29 (p72): 2.7.5 Electron Field Emission from a Single Carbon Nanotube
p2-30 (p75): 2.8 Electron Energy Loss Spectroscopy of Nanoparticles
p2-31 (p75): 2.8.1 Valence Excitation Spectroscopy
p2-32 (p77): 2.8.2 Quantitative Nanoanalysis
p2-33 (p79): 2.8.3 Near Edge Fine Structure and Bonding in Transition Metal Oxides
p2-34 (p81): 2.8.4 Doping of Light Elements in Nanostructures
p2-35 (p85): 2.9 Energy-Filtered Electron Imaging
p2-36 (p85): 2.9.1 Chemical Imaging of Giant Magnetoresistive Multilayers
p2-37 (p89): 2.9.2 Imaging of Spin Valves
p2-38 (p91): 2.9.3 Mapping Valence States of Transition Metals
p2-39 (p93): 2.10 Energy Dispersive X-ray Microanalysis(EDS)
p2-40 (p94): 2.11 Summary
p2-41 (p95): References
p3 (p99): 3 Scanning Electron Microscopy
p3-2 (p99): 3.1 Introduction
p3-3 (p100): 3.2 Basic Principals of Scanning Electron Microscopy
p3-4 (p101): 3.2.1 Main Parameters of Electron Optics
p3-5 (p102): 3.2.2 The Minimum Attainable Beam Diameter
p3-6 (p103): 3.3 Contrast Formation and Interpretation
p3-7 (p111): 3.4 Secondary Electron Detectors
p3-8 (p111): 3.4.1 Everhart-Thornley Detector
p3-9 (p112): 3.4.2 In-iens Secondary Electron Detector
p3-10 (p114): 3.5 Dedicated Detectors
p3-11 (p114): 3.5.1 Solid-State Diode Detector
p3-12 (p115): 3.5.2 Scintillator Backscattered Electron Detector
p3-13 (p115): 3.5.3 BSE-to-SE Conversion Detectors
p3-14 (p115): 3.5.4 Multi-detector System
p3-15 (p116): 3.5.5 Electron Backscattered Diffraction(EBSD)
p3-16 (p117): 3.5.6 Magnetic Contrast
p3-17 (p118): 3.5.7 X-ray Spectrometers
p3-18 (p120): 3.6 Conclusions
p3-19 (p121): References
p3-20 (p124): 4.1 Overview
p4 (p124): 4 Scanning Probe Microscopy
p4-2 (p125): 4.2 Scanning Tunneling Microscopy
p4-3 (p125): 4.2.1 Introduction
p4-4 (p127): 4.2.2 STM Studies on Metals
p4-5 (p130): 4.2.3 STM Studies on Semiconducting Surfaces
p4-6 (p135): 4.2.4 Organic Molecules Studied by STM
p4-7 (p138): 4.3 Atomic Force Microscopy
p4-8 (p138): 4.3.1 Introduction
p4-9 (p139): 4.3.2 The Force Sensor
p4-10 (p141): 4.3.3 lllustration of AFM Applications
p4-11 (p144): 4.3.4 Force Spectrum Analysis
p4-12 (p146): 4.3.5 Lateral Force Microscopy
p4-13 (p147): 4.3.6 Force Microscope operating in Non-contact Mode
p4-14 (p148): 4.3.7 Force Microscope Operating in Tapping Mode
p4-15 (p150): 4.3.8 Magnetic Force Microscopy
p4-16 (p152): 4.4 Ballistic-Electron-Emission Microscopy
p4-17 (p152): 4.4.1 The Principle of BEEM
p4-18 (p154): 4.4.2 BEEM Experiments
p4-19 (p156): 4.4.3 Ballistic-Hole Spectroscopy of Interfaces
p4-20 (p159): 4.5 Applications of STM and BEEM in Surface and Interface Modifications
p4-21 (p160): 4.5.1 Surface Nanofabrication with STM
p4-22 (p164): 4.5.2 Single Atom Manipulation
p4-23 (p166): 4.5.3 Interfacial Modification with BEEM
p4-24 (p167): 4.6 Concluding Remarks
p4-25 (p168): References
p5 (p172): 5 Optical Spectroscopy
p5-2 (p172): 5.1 Introduction
p5-3 (p173): 5.2 Nanoclusters and Nanocrystals
p5-4 (p174): 5.2.1 Absorption and Photoluminescence Spectroscopic Evidence for Quantum Confinement
p5-5 (p181): 5.2.2 Raman and FTIR Studies on the QDs and Its Supramolecular Assemblies
p5-6 (p184): 5.2.3 High Resolution Spectroscopy of Individual Quantum Dots
p5-7 (p192): 5.2.4 Ultrafast Spectroscopy in Quantum Confined Structures
p5-8 (p197): 5.3.1 Processing on the Nanostructures
p5-9 (p197): 5.3 The Control of Nanostructures by Spectroscopic Diagnosis
p5-10 (p201): 5.3.2 Spectroscopic Diagnosis
p5-11 (p212): 5.3.3 Photovoltage Spectroscopy of Surface and Interface
p5-12 (p215): References
p6 (p219): 6 Dynamic Properties of Nanoparticles
p6-2 (p219): 6.1 Introduction
p6-3 (p220): 6.2 Experimental Techniques
p6-4 (p220): 6.2.1 Synthesis of Semiconductor Nanoparticles
p6-5 (p222): 6.2.2 Synthesis of Metal Nanoparticles
p6-6 (p222): 6.2.3 Characterization of Nanoparticles
p6-7 (p223): 6.2.4 Dynamics Measurements with Time-Resolved Techniques
p6-8 (p225): 6.3.1 Theoretical Considerations
p6-9 (p225): 6.3 Dynamic Properties of Semiconductor Nanoparticles
p6-10 (p228): 6.3.2 CdS,CdSe and Related Systems
p6-11 (p231): 6.3.3 Metal Oxide Nanoparticles:TiO2,Fe2O3,ZnO,SnO2
p6-12 (p234): 6.3.4 Other Semiconductor Nanoparticle Systems:Si,Agl,Ag2S,PbS
p6-13 (p235): 6.3.5 Nanoparticles of Layered Semiconductors:MoS2,Pbl2
p6-14 (p237): 6.3.6 Effects of Particle Surface,Size and Shape
p6-15 (p238): 6.4 Dynamic Properties of Metal Nanoparticles
p6-16 (p238): 6.4.1 Background and Theoretical Considerations
p6-17 (p240): 6.4.2 Gold(Au)Nanoparticles
p6-18 (p242): 6.4.3 Other Metal Nanoparticles:Ag,Cu,Sn,Ga and Pt
p6-19 (p242): 6.4.4 Effects of Surface,Size and Shape
p6-20 (p243): 6.5 Summary and Prospects
p6-21 (p244): References
p7 (p252): 7 Magnetic Characterization
p7-2 (p252): 7.1 Introduction
p7-3 (p255): 7.2 SQUID Magnetometry
p7-4 (p262): 7.3 M(?)ssbauer Spectroscopy
p7-5 (p273): 7.4 Neutron Powder Diffraction
p7-6 (p277): 7.5 Lorentz Microscopy
p7-7 (p281): 7.6 Summary
p7-8 (p281): References
p8 (p283): 8 Electrochemical Characterization
p8-2 (p283): 8.1 Introduction
p8-3 (p285): 8.2.1 Electrodeposition and Electrophoretic Deposition
p8-4 (p285): 8.2 Preparation of Nanostructured Electrode
p8-5 (p287): 8.2.2 Formation of Nanoparticles in Polymers
p8-6 (p288): 8.2.3 Electrochemical Self-Assembly
p8-7 (p289): 8.2.4 Mesoporous Electrodes
p8-8 (p291): 8.2.5 Composite Electrodes Consisting of Nanoparticles
p8-9 (p291): 8.2.6 Powder Microelectrode
p8-10 (p293): 8.3 Principles of Electrochemical Techniques
p8-11 (p293): 8.3.1 Impedance Spectroscopy
p8-12 (p300): 8.3.2 Potential Sweep Method
p8-13 (p304): 8.3.3 Potential Step Method
p8-14 (p307): 8.3.4 Controlled-Current Techniques
p8-15 (p312): 8.3.5 Electrochemical Quartz Crystal Microbalance
p8-16 (p316): 8.4 Application to Nanostructured Electrodes
p8-17 (p316): 8.4.1 Characterizing the Reversibility of Battery Electrode Materials
p8-18 (p319): 8.4.2 Characterizing the Transport Properties
p8-19 (p320): 8.5 Summary
p8-20 (p321): References
p9 (p326): 9 Mechanical Property Characterization
p9-2 (p326): 9.1 Elasticity Study of Metal Nanometer Films
p9-3 (p326): 9.1.1 Vibrating Reed Method
p9-4 (p328): 9.1.2 Elasticity Measurements on Ag and Al Films
p9-5 (p332): 9.1.3 Supermodulus Effect in Ag/Pd Multilayers
p9-6 (p336): 9.2 Mechanical Behavior of High-Density Nanocrystalline Gold
p9-7 (p348): 9.3.1 Introduction
p9-8 (p348): 9.3 FIB/TEM Observation of Defect Structure Underneath an Indentation
p9-9 (p349): 9.3.2 FIB Milling
p9-10 (p349): 9.3.3 Experimental Procedures
p9-11 (p349): 9.3.4 Load-Displacement Curve
p9-12 (p352): 9.3.5 TEM Observation
p9-13 (p355): 9.3.6 Conclusion
p9-14 (p355): References
p10 (p358): 10 Thermal Analysis
p10-2 (p358): 10.1 Introduction
p10-3 (p359): 10.2 Fundamental Techniques
p10-4 (p364): 10.3 Experimental Approach
p10-5 (p365): 10.3.1 Melting of Nanophases and Nanostructured Materials
p10-6 (p366): 10.3.2 Kinetics of Glass-Nanocrystal Transition and Grain Growth of Nanostructured Materials
p10-7 (p369): 10.3.3 Heat capacity of Nanostructured Materials
p10-8 (p370): 10.3.4 Interface Enthalpy of Nanostructured Materials
p10-9 (p372): 10.4 Data Interpretation
p10-10 (p372): 10.4.1 Size-Dependent Melting Thermodynamics of Nanophases
p10-11 (p374): 10.4.2 Glass-nanocrystal Transition Thermodynamics
p10-12 (p374): 10.5 Examples of Applications
p10-13 (p382): 10.6 Limitalions
p10-14 (p383): 10.7 Prospects
p10-15 (p384): References
p10-16 (p386): Index
p1-2 (p1): 1.1 Introduction
p1-3 (p4): 1.2 X-ray and Neutron Diffraction
p1-4 (p14): 1.3 Inelastic Neutron Scattering
p1-5 (p21): 1.4 Small Angle Scattering
p1-6 (p24): 1.5 Concluding Remarks
p1-7 (p25): References
p2 (p29): 2 Transmission Electron Microscopy and Spectroscopy
p2-2 (p29): 2.1 Major Components of a Transmission Electron Microscope
p2-3 (p31): 2.2 Atomic Resolution Lattice Imaging of Crystalline Specimens
p2-4 (p31): 2.2.1 Phase Contrast
p2-5 (p32): 2.2.2 Abbe’s Imaging Theory
p2-6 (p34): 2.2.3 Image Interpretation of Very Thin Samples
p2-7 (p34): 2.2.4 Image Simulation
p2-8 (p37): 2.3 Faceted Shapes of Nanocrystals
p2-9 (p37): 2.3.1 Polyhedral Shapes of Nanoparticles
p2-10 (p41): 2.3.2 Twinning Structure and Stacking Faults
p2-11 (p42): 2.3.3 Decahedral and lcosahedral Particles
p2-12 (p43): 2.3.4 Nucleation and Growth of Nanoparticles
p2-13 (p46): 2.4 Electron Holography
p2-14 (p48): 2.5 Lorentz Microscopy
p2-15 (p48): 2.5.1 Principle of Lorentz Microscopy
p2-16 (p49): 2.5.3 Fresnel Lorentz Microscopy
p2-17 (p49): 2.5.2 Elimination/Reduction of Magnetic Field from Objective Lens
p2-18 (p50): 2.5.4 Foucault Lorentz Microscopy
p2-19 (p51): 2.5.5 Differential Phase Contrast Mode of Lorentz Microscopy in STEM
p2-20 (p52): 2.6 Nanodiffraction
p2-21 (p53): 2.6.1 Optics for Nanodiffraction
p2-22 (p53): 2.6.2 Experimental Procedures to Obtain a Nanodiffraction Pattern
p2-23 (p54): 2.6.3 Some Applications
p2-24 (p61): 2.7 In situ TEM and Nanomeasurements
p2-25 (p62): 2.7.1 Thermodynamic Properties of Nanocrystals
p2-26 (p68): 2.7.2 Nanomeasurement of Electrical Transport in Quantum Wires
p2-27 (p70): 2.7.3 Nanomeasurement of Mechanical Properties of Fiber-Like Structures
p2-28 (p71): 2.7.4 Femtogram Nanobalance of a Single Fine Particle
p2-29 (p72): 2.7.5 Electron Field Emission from a Single Carbon Nanotube
p2-30 (p75): 2.8 Electron Energy Loss Spectroscopy of Nanoparticles
p2-31 (p75): 2.8.1 Valence Excitation Spectroscopy
p2-32 (p77): 2.8.2 Quantitative Nanoanalysis
p2-33 (p79): 2.8.3 Near Edge Fine Structure and Bonding in Transition Metal Oxides
p2-34 (p81): 2.8.4 Doping of Light Elements in Nanostructures
p2-35 (p85): 2.9 Energy-Filtered Electron Imaging
p2-36 (p85): 2.9.1 Chemical Imaging of Giant Magnetoresistive Multilayers
p2-37 (p89): 2.9.2 Imaging of Spin Valves
p2-38 (p91): 2.9.3 Mapping Valence States of Transition Metals
p2-39 (p93): 2.10 Energy Dispersive X-ray Microanalysis(EDS)
p2-40 (p94): 2.11 Summary
p2-41 (p95): References
p3 (p99): 3 Scanning Electron Microscopy
p3-2 (p99): 3.1 Introduction
p3-3 (p100): 3.2 Basic Principals of Scanning Electron Microscopy
p3-4 (p101): 3.2.1 Main Parameters of Electron Optics
p3-5 (p102): 3.2.2 The Minimum Attainable Beam Diameter
p3-6 (p103): 3.3 Contrast Formation and Interpretation
p3-7 (p111): 3.4 Secondary Electron Detectors
p3-8 (p111): 3.4.1 Everhart-Thornley Detector
p3-9 (p112): 3.4.2 In-iens Secondary Electron Detector
p3-10 (p114): 3.5 Dedicated Detectors
p3-11 (p114): 3.5.1 Solid-State Diode Detector
p3-12 (p115): 3.5.2 Scintillator Backscattered Electron Detector
p3-13 (p115): 3.5.3 BSE-to-SE Conversion Detectors
p3-14 (p115): 3.5.4 Multi-detector System
p3-15 (p116): 3.5.5 Electron Backscattered Diffraction(EBSD)
p3-16 (p117): 3.5.6 Magnetic Contrast
p3-17 (p118): 3.5.7 X-ray Spectrometers
p3-18 (p120): 3.6 Conclusions
p3-19 (p121): References
p3-20 (p124): 4.1 Overview
p4 (p124): 4 Scanning Probe Microscopy
p4-2 (p125): 4.2 Scanning Tunneling Microscopy
p4-3 (p125): 4.2.1 Introduction
p4-4 (p127): 4.2.2 STM Studies on Metals
p4-5 (p130): 4.2.3 STM Studies on Semiconducting Surfaces
p4-6 (p135): 4.2.4 Organic Molecules Studied by STM
p4-7 (p138): 4.3 Atomic Force Microscopy
p4-8 (p138): 4.3.1 Introduction
p4-9 (p139): 4.3.2 The Force Sensor
p4-10 (p141): 4.3.3 lllustration of AFM Applications
p4-11 (p144): 4.3.4 Force Spectrum Analysis
p4-12 (p146): 4.3.5 Lateral Force Microscopy
p4-13 (p147): 4.3.6 Force Microscope operating in Non-contact Mode
p4-14 (p148): 4.3.7 Force Microscope Operating in Tapping Mode
p4-15 (p150): 4.3.8 Magnetic Force Microscopy
p4-16 (p152): 4.4 Ballistic-Electron-Emission Microscopy
p4-17 (p152): 4.4.1 The Principle of BEEM
p4-18 (p154): 4.4.2 BEEM Experiments
p4-19 (p156): 4.4.3 Ballistic-Hole Spectroscopy of Interfaces
p4-20 (p159): 4.5 Applications of STM and BEEM in Surface and Interface Modifications
p4-21 (p160): 4.5.1 Surface Nanofabrication with STM
p4-22 (p164): 4.5.2 Single Atom Manipulation
p4-23 (p166): 4.5.3 Interfacial Modification with BEEM
p4-24 (p167): 4.6 Concluding Remarks
p4-25 (p168): References
p5 (p172): 5 Optical Spectroscopy
p5-2 (p172): 5.1 Introduction
p5-3 (p173): 5.2 Nanoclusters and Nanocrystals
p5-4 (p174): 5.2.1 Absorption and Photoluminescence Spectroscopic Evidence for Quantum Confinement
p5-5 (p181): 5.2.2 Raman and FTIR Studies on the QDs and Its Supramolecular Assemblies
p5-6 (p184): 5.2.3 High Resolution Spectroscopy of Individual Quantum Dots
p5-7 (p192): 5.2.4 Ultrafast Spectroscopy in Quantum Confined Structures
p5-8 (p197): 5.3.1 Processing on the Nanostructures
p5-9 (p197): 5.3 The Control of Nanostructures by Spectroscopic Diagnosis
p5-10 (p201): 5.3.2 Spectroscopic Diagnosis
p5-11 (p212): 5.3.3 Photovoltage Spectroscopy of Surface and Interface
p5-12 (p215): References
p6 (p219): 6 Dynamic Properties of Nanoparticles
p6-2 (p219): 6.1 Introduction
p6-3 (p220): 6.2 Experimental Techniques
p6-4 (p220): 6.2.1 Synthesis of Semiconductor Nanoparticles
p6-5 (p222): 6.2.2 Synthesis of Metal Nanoparticles
p6-6 (p222): 6.2.3 Characterization of Nanoparticles
p6-7 (p223): 6.2.4 Dynamics Measurements with Time-Resolved Techniques
p6-8 (p225): 6.3.1 Theoretical Considerations
p6-9 (p225): 6.3 Dynamic Properties of Semiconductor Nanoparticles
p6-10 (p228): 6.3.2 CdS,CdSe and Related Systems
p6-11 (p231): 6.3.3 Metal Oxide Nanoparticles:TiO2,Fe2O3,ZnO,SnO2
p6-12 (p234): 6.3.4 Other Semiconductor Nanoparticle Systems:Si,Agl,Ag2S,PbS
p6-13 (p235): 6.3.5 Nanoparticles of Layered Semiconductors:MoS2,Pbl2
p6-14 (p237): 6.3.6 Effects of Particle Surface,Size and Shape
p6-15 (p238): 6.4 Dynamic Properties of Metal Nanoparticles
p6-16 (p238): 6.4.1 Background and Theoretical Considerations
p6-17 (p240): 6.4.2 Gold(Au)Nanoparticles
p6-18 (p242): 6.4.3 Other Metal Nanoparticles:Ag,Cu,Sn,Ga and Pt
p6-19 (p242): 6.4.4 Effects of Surface,Size and Shape
p6-20 (p243): 6.5 Summary and Prospects
p6-21 (p244): References
p7 (p252): 7 Magnetic Characterization
p7-2 (p252): 7.1 Introduction
p7-3 (p255): 7.2 SQUID Magnetometry
p7-4 (p262): 7.3 M(?)ssbauer Spectroscopy
p7-5 (p273): 7.4 Neutron Powder Diffraction
p7-6 (p277): 7.5 Lorentz Microscopy
p7-7 (p281): 7.6 Summary
p7-8 (p281): References
p8 (p283): 8 Electrochemical Characterization
p8-2 (p283): 8.1 Introduction
p8-3 (p285): 8.2.1 Electrodeposition and Electrophoretic Deposition
p8-4 (p285): 8.2 Preparation of Nanostructured Electrode
p8-5 (p287): 8.2.2 Formation of Nanoparticles in Polymers
p8-6 (p288): 8.2.3 Electrochemical Self-Assembly
p8-7 (p289): 8.2.4 Mesoporous Electrodes
p8-8 (p291): 8.2.5 Composite Electrodes Consisting of Nanoparticles
p8-9 (p291): 8.2.6 Powder Microelectrode
p8-10 (p293): 8.3 Principles of Electrochemical Techniques
p8-11 (p293): 8.3.1 Impedance Spectroscopy
p8-12 (p300): 8.3.2 Potential Sweep Method
p8-13 (p304): 8.3.3 Potential Step Method
p8-14 (p307): 8.3.4 Controlled-Current Techniques
p8-15 (p312): 8.3.5 Electrochemical Quartz Crystal Microbalance
p8-16 (p316): 8.4 Application to Nanostructured Electrodes
p8-17 (p316): 8.4.1 Characterizing the Reversibility of Battery Electrode Materials
p8-18 (p319): 8.4.2 Characterizing the Transport Properties
p8-19 (p320): 8.5 Summary
p8-20 (p321): References
p9 (p326): 9 Mechanical Property Characterization
p9-2 (p326): 9.1 Elasticity Study of Metal Nanometer Films
p9-3 (p326): 9.1.1 Vibrating Reed Method
p9-4 (p328): 9.1.2 Elasticity Measurements on Ag and Al Films
p9-5 (p332): 9.1.3 Supermodulus Effect in Ag/Pd Multilayers
p9-6 (p336): 9.2 Mechanical Behavior of High-Density Nanocrystalline Gold
p9-7 (p348): 9.3.1 Introduction
p9-8 (p348): 9.3 FIB/TEM Observation of Defect Structure Underneath an Indentation
p9-9 (p349): 9.3.2 FIB Milling
p9-10 (p349): 9.3.3 Experimental Procedures
p9-11 (p349): 9.3.4 Load-Displacement Curve
p9-12 (p352): 9.3.5 TEM Observation
p9-13 (p355): 9.3.6 Conclusion
p9-14 (p355): References
p10 (p358): 10 Thermal Analysis
p10-2 (p358): 10.1 Introduction
p10-3 (p359): 10.2 Fundamental Techniques
p10-4 (p364): 10.3 Experimental Approach
p10-5 (p365): 10.3.1 Melting of Nanophases and Nanostructured Materials
p10-6 (p366): 10.3.2 Kinetics of Glass-Nanocrystal Transition and Grain Growth of Nanostructured Materials
p10-7 (p369): 10.3.3 Heat capacity of Nanostructured Materials
p10-8 (p370): 10.3.4 Interface Enthalpy of Nanostructured Materials
p10-9 (p372): 10.4 Data Interpretation
p10-10 (p372): 10.4.1 Size-Dependent Melting Thermodynamics of Nanophases
p10-11 (p374): 10.4.2 Glass-nanocrystal Transition Thermodynamics
p10-12 (p374): 10.5 Examples of Applications
p10-13 (p382): 10.6 Limitalions
p10-14 (p383): 10.7 Prospects
p10-15 (p384): References
p10-16 (p386): Index
元数据中的注释
related_files:
filepath:纳米相和纳米结构材料——结构和性能表征手册_11007137.zip — md5:e7d9413215ebc49f6557e63b535e4671 — filesize:53414842
filepath:11007137_纳米相和纳米结构材料结构和性能表征手册.zip — md5:64e5a738a4f2794fb7d331a953a1207a — filesize:53413692
filepath:11007137_纳米相和纳米结构材料结构和性能表征手册.zip — md5:3f7940d47d26f3e49d932f57054daecf — filesize:53413692
filepath:11007137.zip — md5:cbdeeee5e294374d7d4943757bf7775f — filesize:53421597
filepath:11007137.rar — md5:b931a4ccfe4246abee45d928e866a827 — filesize:52399188
filepath:11007137.zip — md5:ba252c0c5754e10365bf41a06e89162a — filesize:53454459
filepath:/读秀/读秀3.0/读秀/3.0/3.0补充/第四部分/其余书库等多个文件/001/38/11007137.zip
filepath:/读秀/读秀4.0/读秀/4.0/数据库11-1/11007137_纳米相和纳米结构材料结构和性能表征手册.zip
filepath:16c/福建师范111/11007137_纳米相和纳米结构材料结构和性能表征手册.zip
filepath:17b/福建师范111/11007137_纳米相和纳米结构材料结构和性能表征手册.zip
filepath:纳米相和纳米结构材料——结构和性能表征手册_11007137.zip — md5:e7d9413215ebc49f6557e63b535e4671 — filesize:53414842
filepath:11007137_纳米相和纳米结构材料结构和性能表征手册.zip — md5:64e5a738a4f2794fb7d331a953a1207a — filesize:53413692
filepath:11007137_纳米相和纳米结构材料结构和性能表征手册.zip — md5:3f7940d47d26f3e49d932f57054daecf — filesize:53413692
filepath:11007137.zip — md5:cbdeeee5e294374d7d4943757bf7775f — filesize:53421597
filepath:11007137.rar — md5:b931a4ccfe4246abee45d928e866a827 — filesize:52399188
filepath:11007137.zip — md5:ba252c0c5754e10365bf41a06e89162a — filesize:53454459
filepath:/读秀/读秀3.0/读秀/3.0/3.0补充/第四部分/其余书库等多个文件/001/38/11007137.zip
filepath:/读秀/读秀4.0/读秀/4.0/数据库11-1/11007137_纳米相和纳米结构材料结构和性能表征手册.zip
filepath:16c/福建师范111/11007137_纳米相和纳米结构材料结构和性能表征手册.zip
filepath:17b/福建师范111/11007137_纳米相和纳米结构材料结构和性能表征手册.zip
元数据中的注释
Includes bibliographical references and indexes.
元数据中的注释
Bookmarks: p1 (p1): 1 Clusters
p1-2 (p1): 1.1 Introduction
p1-3 (p5): 1.2 Cluster Syntheses and Characterizations
p1-4 (p6): 1.2.1 Sputtering/SIMS
p1-5 (p7): 1.2.2 Supersonic Jet/Gas Condensation
p1-6 (p9): 1.2.3 Laser Ablation and Vaporization
p1-7 (p11): 1.2.4 Mass Spectrometers
p1-8 (p16): 1.3 Stability and Magic Numbers
p1-9 (p17): 1.3.1 Position Ordering and Momentum Ordering
p1-10 (p18): 1.3.2 Inert Element Clusters——Mackay lcosahedron
p1-11 (p22): 1.3.3 Alkali Halide Clusters
p1-12 (p24): 1.3.4 Semiconductor Clusters
p1-13 (p29): 1.3.5 Metal Clusters
p1-14 (p34): 1.4 Physical Properties
p1-15 (p34): 1.4.1 Size Effect of Electronic Properties
p1-16 (p41): 1.4.2 Lattice Dynamics and Phase Change
p1-17 (p53): 1.4.3 Optical Properties
p1-18 (p58): 1.4.4 Magnetism
p1-19 (p67): 1.4.5 Electronic Conductance
p1-20 (p75): 1.5 Perspectives
p1-21 (p76): References
p1-22 (p85): 2.1 Introduction
p2 (p85): 2 Semiconductor Nanoparticles
p2-2 (p86): 2.2 Synthesis of Semiconductor Nanoparticles
p2-3 (p89): 2.3 Characterization
p2-4 (p89): 2.3.1 Spectroscopy
p2-5 (p90): 2.3.2 Microscopy
p2-6 (p91): 2.3.3 X-ray Techniques
p2-7 (p92): 2.4 Theory
p2-8 (p92): 2.4.1 Quantum Size Confinement
p2-9 (p96): 2.4.2 Ionization Potential and Coulomb Blockade
p2-10 (p97): 2.5 Surface Modification
p2-11 (p97): 2.5.1 Influence of Surface and Surface Modification
p2-12 (p99): 2.5.2 Core/Shell and Coupled Semiconductor Nanoparticles
p2-13 (p101): 2.6 Phase Transitions
p2-14 (p104): 2.7 Nanocrystal Superlattices/Self-Assembly
p2-15 (p106): 2.8 Applications
p2-16 (p108): 2.9 Concluding Remarks
p2-17 (p109): References
p3 (p121): 3 Electrochemical Self-Assembly of Ordered Quantum Dot and Wire Arrays
p3-2 (p121): 3.1 Introduction
p3-3 (p122): 3.2 Fabricating Quantum Dots:Self-Assembly
p3-4 (p124): 3.3 Electrochemical Self-Assembly
p3-5 (p124): 3.3.1 Self-Assembling a Mask for Qrdered Quantum Dot and Wire Arrays by Electropolishing Aluminum
p3-6 (p130): 3.3.2 Theory of Pattern Formation during Electropolishing
p3-7 (p134): 3.4 Quantum Dots Produced by Filling Nanopores in Anodic Alumina
p3-8 (p135): 3.4.1 Theory of Pore Formation
p3-9 (p136): 3.4.2 Filling the Pores by Electrodeposition
p3-10 (p138): 3.5 Characterization of Quantum Dots Self-Assembled by Pore Filling
p3-11 (p139): 3.5.1 Linear Optical Properties
p3-12 (p141): 3.5.2 Non-linear Optical Properties
p3-13 (p143): 3.5.3 Nanomagnetic Properties
p3-14 (p144): 3.5.4 Electronic Bistability in Self-Assembled Quantum Dots and lts Circuit Applications
p3-15 (p146): 3.6 Conclusion
p3-16 (p146): References
p3-17 (p150): 4.1 Introduction to Nanowires
p4 (p150): 4 Semiconductor Nanowires
p4-2 (p151): 4.2 Methods of synthesis of the Nanowires
p4-3 (p151): 4.2.1 Chemical Vapor Deposition(CVD)
p4-4 (p152): 4.2.2 Laser Ablation
p4-5 (p153): 4.2.3 Carbon Nanotube Confined Reaction
p4-6 (p155): 4.2.4 Vapor Phase Evaporation
p4-7 (p157): 4.2.5 Electrochemical Deposition—Template Approach
p4-8 (p159): 4.3 Growth Mechanism of Nanowires
p4-9 (p159): 4.3.1 Vapor-Liquid-Solid(VLS)Growth
p4-10 (p163): 4.3.2 Solution-Liquid-Solid(SLS)Growth
p4-11 (p163): 4.3.3 Vapor Phase Epitaxy
p4-12 (p165): 4.4.1 Silicon and Germanium Nanowires
p4-13 (p165): 4.4 Nanowire Systems
p4-14 (p179): 4.4.2 Semiconductor Compound Nanowires
p4-15 (p186): 4.4.3 Metal Nanowires
p4-16 (p187): 4.4.4 Oxide Nanowires
p4-17 (p197): 4.4.5 Other Nanowires
p4-18 (p198): 4.5 Physical Property Study of the Nanowires
p4-19 (p198): 4.5.1 Photoluminescence of the SiNW’s
p4-20 (p204): 4.5.2 Raman Spectroscopy
p4-21 (p208): 4.5.3 Nano-electronics
p4-22 (p210): 4.6 Conclusion
p4-23 (p210): References
p4-24 (p215): 5.1 Introduction
p5 (p215): 5 Magnetic Nanocrystals and Arrays
p5-2 (p217): 5.2 Theory
p5-3 (p221): 5.3 Processing
p5-4 (p221): 5.3.1 Lithography
p5-5 (p224): 5.3.2 Atomic-Beam Holography
p5-6 (p224): 5.3.3 Scanning Probe-Assisted Patterning
p5-7 (p226): 5.3.4 Self-Assembling
p5-8 (p229): 5.4 Characterization
p5-9 (p229): 5.4.1 Physical Structure Characterzation
p5-10 (p231): 5.4.2 Magnetic Structure
p5-11 (p232): 5.4.3 Magnetic Measurements
p5-12 (p234): 5.5.1 Effect of Particle Size on Magnetic Properties
p5-13 (p234): 5.5 Properties,Applications and Materials
p5-14 (p237): 5.5.2 Applications
p5-15 (p237): 5.5.3 Materials Systems
p5-16 (p239): 5.6 Concluding Remarks
p5-17 (p240): References
p6 (p244): 6 Nanostructured Soft and Hard Magnetic Materials
p6-2 (p244): 6.1 Introduction
p6-3 (p245): 6.2 Nanostructured Soft Magnetic Materials
p6-4 (p245): 6.2.1 Development of Soft Magnetic Materials
p6-5 (p247): 6.2.2 Relationship between the Grain Size and the Coercivity
p6-6 (p249): 6.2.3 Novel Nanostructured Soft Magnetic Materials
p6-7 (p251): 6.3.1 History of Permanent Magnetic Materials
p6-8 (p251): 6.3 Nanostructured Permanent Magnetic Materials
p6-9 (p253): 6.3.2 Theoretical Outline of Exchange-Coupled Nanocomposite Magnets
p6-10 (p256): 6.3.3 Preparation and Characterization of the Materials
p6-11 (p263): 6.4 Nanomagnets
p6-12 (p264): 6.5 Concluding Remarks
p6-13 (p265): References
p7 (p269): 7 Nanomaterials for Information Storage
p7-2 (p269): 7.1 Introduction
p7-3 (p270): 7.2 Magnetic Recording Media
p7-4 (p270): 7.2.1 Introduction
p7-5 (p271): 7.2.2 Requirements for High-Density-Recording Media
p7-6 (p276): 7.2.3 Structure and Magnetic Properties of Recording Media
p7-7 (p285): 7.2.4 New Media Development
p7-8 (p297): 7.3 Magnetic Recording Heads
p7-9 (p297): 7.3.1 Introduction
p7-10 (p300): 7.3.2 Materials Requirements for Recording Head Applications
p7-11 (p302): 7.3.3 GMR Effect
p7-12 (p307): 7.3.4 Exchange Coupling between Ferro-and Antiferromagnetic Films
p7-13 (p315): 7.3.5 Magnetostriction
p7-14 (p318): 7.3.6 Future Trends of Recording Head Research
p7-15 (p319): 7.3.7 Perspective and Limitation of Magnetic Recording Technology
p7-16 (p320): 7.4 Magnetic Random Access Memory
p7-17 (p320): 7.4.1 Introduction
p7-18 (p321): 7.4.3 Basic Principle of a PSV Cell
p7-19 (p321): 7.4.2 MRAM Operations
p7-20 (p323): 7.4.4 A Single-Domain Model for PSV Cell
p7-21 (p326): 7.4.5 Micromagnetic Simulations
p7-22 (p327): 7.4.6 Bit End Designs
p7-23 (p328): 7.4.7 MRAM Materials
p7-24 (p329): 7.4.8 A SDT Cell
p7-25 (p330): 7.4.9 A Vertical GMR Cell
p7-26 (p331): 7.4.10 Switching Speed
p7-27 (p332): 7.4.11 Perspective
p7-28 (p332): References
p7-29 (p337): 8.1 Introduction
p8 (p337): 8 Magnetic Liquids
p8-2 (p338): 8.2 Synthesis Processes
p8-3 (p338): 8.2.1 Magnetic Particles
p8-4 (p340): 8.2.2 Carrier Liquid and Surfactant
p8-5 (p341): 8.3 Properties of Magnetic Liquids
p8-6 (p341): 8.3.1 Stability of Magnetic Liquids
p8-7 (p344): 8.3.2 Magnetic Properties
p8-8 (p346): 8.3.3 Ferrohydrodynamics
p8-9 (p348): 8.3.4 Optical Properties
p8-10 (p352): 8.3.5 Ultrasonic Properties
p8-11 (p353): 8.4 Applications
p8-12 (p354): 8.4.1 Dynamic Process Seal
p8-13 (p356): 8.4.2 Magnetic Liquid Film Bearing
p8-14 (p357): 8.4.3 Magnetic Liquid Separators
p8-15 (p358): 8.4.4 Magnetic Liquid Damper
p8-16 (p360): 8.4.5 Magnetic Liquid Loudspeaker
p8-17 (p361): 8.4.6 Magnetic Liquid Switch
p8-18 (p362): 8.4.7 Magnetic Liquid Grinding
p8-19 (p363): 8.4.8 Magnetic Liquid Sensors
p8-20 (p365): 8.4.9 Magnetic Liquid Printing
p8-21 (p365): 8.4.10 Biological and Medical Applications
p8-22 (p367): 8.4.11 Other Applications
p8-23 (p368): 8.5 Prospects
p8-24 (p369): References
p9 (p374): 9 Functional Oxide Nanocrystals
p9-2 (p374): 9.1 Introduction
p9-3 (p374): 9.2 Transition and Rare Earth Metal Oxides
p9-4 (p376): 9.3 Properties and Devices
p9-5 (p377): 9.3.1 Sensoring
p9-6 (p379): 9.3.2 Catalysis
p9-7 (p379): 9.3.3 Actuating
p9-8 (p380): 9.4 Silicates
p9-9 (p381): 9.5 Nanocomposites
p9-10 (p382): 9.6.1 Surface Atom Mobility and surface Reactivity
p9-11 (p382): 9.6 Special Effects of Nanosize Oxides
p9-12 (p384): 9.6.2 From Nanosize Crystals to Nanostructured Materials
p9-13 (p385): 9.7 Self-Assembly of Oxide Nanocrystals
p9-14 (p385): 9.7.1 Nanoparticles and Clusters
p9-15 (p386): 9.7.2 From Nanocrystals to Films
p9-16 (p388): 9.8 Meso-and Macroporous Oxides
p9-17 (p389): 9.8.1 Structural Cavity
p9-18 (p391): 9.8.2 Texture Porosity
p9-19 (p392): 9.9 Biomimetic Mineralization
p9-20 (p393): 9.10 Conclusion
p9-21 (p394): References
p9-22 (p396): Index
p1-2 (p1): 1.1 Introduction
p1-3 (p5): 1.2 Cluster Syntheses and Characterizations
p1-4 (p6): 1.2.1 Sputtering/SIMS
p1-5 (p7): 1.2.2 Supersonic Jet/Gas Condensation
p1-6 (p9): 1.2.3 Laser Ablation and Vaporization
p1-7 (p11): 1.2.4 Mass Spectrometers
p1-8 (p16): 1.3 Stability and Magic Numbers
p1-9 (p17): 1.3.1 Position Ordering and Momentum Ordering
p1-10 (p18): 1.3.2 Inert Element Clusters——Mackay lcosahedron
p1-11 (p22): 1.3.3 Alkali Halide Clusters
p1-12 (p24): 1.3.4 Semiconductor Clusters
p1-13 (p29): 1.3.5 Metal Clusters
p1-14 (p34): 1.4 Physical Properties
p1-15 (p34): 1.4.1 Size Effect of Electronic Properties
p1-16 (p41): 1.4.2 Lattice Dynamics and Phase Change
p1-17 (p53): 1.4.3 Optical Properties
p1-18 (p58): 1.4.4 Magnetism
p1-19 (p67): 1.4.5 Electronic Conductance
p1-20 (p75): 1.5 Perspectives
p1-21 (p76): References
p1-22 (p85): 2.1 Introduction
p2 (p85): 2 Semiconductor Nanoparticles
p2-2 (p86): 2.2 Synthesis of Semiconductor Nanoparticles
p2-3 (p89): 2.3 Characterization
p2-4 (p89): 2.3.1 Spectroscopy
p2-5 (p90): 2.3.2 Microscopy
p2-6 (p91): 2.3.3 X-ray Techniques
p2-7 (p92): 2.4 Theory
p2-8 (p92): 2.4.1 Quantum Size Confinement
p2-9 (p96): 2.4.2 Ionization Potential and Coulomb Blockade
p2-10 (p97): 2.5 Surface Modification
p2-11 (p97): 2.5.1 Influence of Surface and Surface Modification
p2-12 (p99): 2.5.2 Core/Shell and Coupled Semiconductor Nanoparticles
p2-13 (p101): 2.6 Phase Transitions
p2-14 (p104): 2.7 Nanocrystal Superlattices/Self-Assembly
p2-15 (p106): 2.8 Applications
p2-16 (p108): 2.9 Concluding Remarks
p2-17 (p109): References
p3 (p121): 3 Electrochemical Self-Assembly of Ordered Quantum Dot and Wire Arrays
p3-2 (p121): 3.1 Introduction
p3-3 (p122): 3.2 Fabricating Quantum Dots:Self-Assembly
p3-4 (p124): 3.3 Electrochemical Self-Assembly
p3-5 (p124): 3.3.1 Self-Assembling a Mask for Qrdered Quantum Dot and Wire Arrays by Electropolishing Aluminum
p3-6 (p130): 3.3.2 Theory of Pattern Formation during Electropolishing
p3-7 (p134): 3.4 Quantum Dots Produced by Filling Nanopores in Anodic Alumina
p3-8 (p135): 3.4.1 Theory of Pore Formation
p3-9 (p136): 3.4.2 Filling the Pores by Electrodeposition
p3-10 (p138): 3.5 Characterization of Quantum Dots Self-Assembled by Pore Filling
p3-11 (p139): 3.5.1 Linear Optical Properties
p3-12 (p141): 3.5.2 Non-linear Optical Properties
p3-13 (p143): 3.5.3 Nanomagnetic Properties
p3-14 (p144): 3.5.4 Electronic Bistability in Self-Assembled Quantum Dots and lts Circuit Applications
p3-15 (p146): 3.6 Conclusion
p3-16 (p146): References
p3-17 (p150): 4.1 Introduction to Nanowires
p4 (p150): 4 Semiconductor Nanowires
p4-2 (p151): 4.2 Methods of synthesis of the Nanowires
p4-3 (p151): 4.2.1 Chemical Vapor Deposition(CVD)
p4-4 (p152): 4.2.2 Laser Ablation
p4-5 (p153): 4.2.3 Carbon Nanotube Confined Reaction
p4-6 (p155): 4.2.4 Vapor Phase Evaporation
p4-7 (p157): 4.2.5 Electrochemical Deposition—Template Approach
p4-8 (p159): 4.3 Growth Mechanism of Nanowires
p4-9 (p159): 4.3.1 Vapor-Liquid-Solid(VLS)Growth
p4-10 (p163): 4.3.2 Solution-Liquid-Solid(SLS)Growth
p4-11 (p163): 4.3.3 Vapor Phase Epitaxy
p4-12 (p165): 4.4.1 Silicon and Germanium Nanowires
p4-13 (p165): 4.4 Nanowire Systems
p4-14 (p179): 4.4.2 Semiconductor Compound Nanowires
p4-15 (p186): 4.4.3 Metal Nanowires
p4-16 (p187): 4.4.4 Oxide Nanowires
p4-17 (p197): 4.4.5 Other Nanowires
p4-18 (p198): 4.5 Physical Property Study of the Nanowires
p4-19 (p198): 4.5.1 Photoluminescence of the SiNW’s
p4-20 (p204): 4.5.2 Raman Spectroscopy
p4-21 (p208): 4.5.3 Nano-electronics
p4-22 (p210): 4.6 Conclusion
p4-23 (p210): References
p4-24 (p215): 5.1 Introduction
p5 (p215): 5 Magnetic Nanocrystals and Arrays
p5-2 (p217): 5.2 Theory
p5-3 (p221): 5.3 Processing
p5-4 (p221): 5.3.1 Lithography
p5-5 (p224): 5.3.2 Atomic-Beam Holography
p5-6 (p224): 5.3.3 Scanning Probe-Assisted Patterning
p5-7 (p226): 5.3.4 Self-Assembling
p5-8 (p229): 5.4 Characterization
p5-9 (p229): 5.4.1 Physical Structure Characterzation
p5-10 (p231): 5.4.2 Magnetic Structure
p5-11 (p232): 5.4.3 Magnetic Measurements
p5-12 (p234): 5.5.1 Effect of Particle Size on Magnetic Properties
p5-13 (p234): 5.5 Properties,Applications and Materials
p5-14 (p237): 5.5.2 Applications
p5-15 (p237): 5.5.3 Materials Systems
p5-16 (p239): 5.6 Concluding Remarks
p5-17 (p240): References
p6 (p244): 6 Nanostructured Soft and Hard Magnetic Materials
p6-2 (p244): 6.1 Introduction
p6-3 (p245): 6.2 Nanostructured Soft Magnetic Materials
p6-4 (p245): 6.2.1 Development of Soft Magnetic Materials
p6-5 (p247): 6.2.2 Relationship between the Grain Size and the Coercivity
p6-6 (p249): 6.2.3 Novel Nanostructured Soft Magnetic Materials
p6-7 (p251): 6.3.1 History of Permanent Magnetic Materials
p6-8 (p251): 6.3 Nanostructured Permanent Magnetic Materials
p6-9 (p253): 6.3.2 Theoretical Outline of Exchange-Coupled Nanocomposite Magnets
p6-10 (p256): 6.3.3 Preparation and Characterization of the Materials
p6-11 (p263): 6.4 Nanomagnets
p6-12 (p264): 6.5 Concluding Remarks
p6-13 (p265): References
p7 (p269): 7 Nanomaterials for Information Storage
p7-2 (p269): 7.1 Introduction
p7-3 (p270): 7.2 Magnetic Recording Media
p7-4 (p270): 7.2.1 Introduction
p7-5 (p271): 7.2.2 Requirements for High-Density-Recording Media
p7-6 (p276): 7.2.3 Structure and Magnetic Properties of Recording Media
p7-7 (p285): 7.2.4 New Media Development
p7-8 (p297): 7.3 Magnetic Recording Heads
p7-9 (p297): 7.3.1 Introduction
p7-10 (p300): 7.3.2 Materials Requirements for Recording Head Applications
p7-11 (p302): 7.3.3 GMR Effect
p7-12 (p307): 7.3.4 Exchange Coupling between Ferro-and Antiferromagnetic Films
p7-13 (p315): 7.3.5 Magnetostriction
p7-14 (p318): 7.3.6 Future Trends of Recording Head Research
p7-15 (p319): 7.3.7 Perspective and Limitation of Magnetic Recording Technology
p7-16 (p320): 7.4 Magnetic Random Access Memory
p7-17 (p320): 7.4.1 Introduction
p7-18 (p321): 7.4.3 Basic Principle of a PSV Cell
p7-19 (p321): 7.4.2 MRAM Operations
p7-20 (p323): 7.4.4 A Single-Domain Model for PSV Cell
p7-21 (p326): 7.4.5 Micromagnetic Simulations
p7-22 (p327): 7.4.6 Bit End Designs
p7-23 (p328): 7.4.7 MRAM Materials
p7-24 (p329): 7.4.8 A SDT Cell
p7-25 (p330): 7.4.9 A Vertical GMR Cell
p7-26 (p331): 7.4.10 Switching Speed
p7-27 (p332): 7.4.11 Perspective
p7-28 (p332): References
p7-29 (p337): 8.1 Introduction
p8 (p337): 8 Magnetic Liquids
p8-2 (p338): 8.2 Synthesis Processes
p8-3 (p338): 8.2.1 Magnetic Particles
p8-4 (p340): 8.2.2 Carrier Liquid and Surfactant
p8-5 (p341): 8.3 Properties of Magnetic Liquids
p8-6 (p341): 8.3.1 Stability of Magnetic Liquids
p8-7 (p344): 8.3.2 Magnetic Properties
p8-8 (p346): 8.3.3 Ferrohydrodynamics
p8-9 (p348): 8.3.4 Optical Properties
p8-10 (p352): 8.3.5 Ultrasonic Properties
p8-11 (p353): 8.4 Applications
p8-12 (p354): 8.4.1 Dynamic Process Seal
p8-13 (p356): 8.4.2 Magnetic Liquid Film Bearing
p8-14 (p357): 8.4.3 Magnetic Liquid Separators
p8-15 (p358): 8.4.4 Magnetic Liquid Damper
p8-16 (p360): 8.4.5 Magnetic Liquid Loudspeaker
p8-17 (p361): 8.4.6 Magnetic Liquid Switch
p8-18 (p362): 8.4.7 Magnetic Liquid Grinding
p8-19 (p363): 8.4.8 Magnetic Liquid Sensors
p8-20 (p365): 8.4.9 Magnetic Liquid Printing
p8-21 (p365): 8.4.10 Biological and Medical Applications
p8-22 (p367): 8.4.11 Other Applications
p8-23 (p368): 8.5 Prospects
p8-24 (p369): References
p9 (p374): 9 Functional Oxide Nanocrystals
p9-2 (p374): 9.1 Introduction
p9-3 (p374): 9.2 Transition and Rare Earth Metal Oxides
p9-4 (p376): 9.3 Properties and Devices
p9-5 (p377): 9.3.1 Sensoring
p9-6 (p379): 9.3.2 Catalysis
p9-7 (p379): 9.3.3 Actuating
p9-8 (p380): 9.4 Silicates
p9-9 (p381): 9.5 Nanocomposites
p9-10 (p382): 9.6.1 Surface Atom Mobility and surface Reactivity
p9-11 (p382): 9.6 Special Effects of Nanosize Oxides
p9-12 (p384): 9.6.2 From Nanosize Crystals to Nanostructured Materials
p9-13 (p385): 9.7 Self-Assembly of Oxide Nanocrystals
p9-14 (p385): 9.7.1 Nanoparticles and Clusters
p9-15 (p386): 9.7.2 From Nanocrystals to Films
p9-16 (p388): 9.8 Meso-and Macroporous Oxides
p9-17 (p389): 9.8.1 Structural Cavity
p9-18 (p391): 9.8.2 Texture Porosity
p9-19 (p392): 9.9 Biomimetic Mineralization
p9-20 (p393): 9.10 Conclusion
p9-21 (p394): References
p9-22 (p396): Index
元数据中的注释
Bookmarks: p1 (p1): 10 Nanomechanism of the Hexagonal-Cubic Phase Transition in Boron Nitride under High Pressure at High Temperature
p1-2 (p1): 10.1 Introduction
p1-3 (p2): 10.2 Processing Method to Get c-BN
p1-4 (p3): 10.3 Characterization Method
p1-5 (p4): 10.4 Phase Transition of Boron Nitride
p1-6 (p4): 10.4.1 Nanostructure of the Starting Material
p1-7 (p6): 10.4.2 Phases and Nanostructures Appearing during the Hexagonal-Cubic Transition
p1-8 (p16): 10.5 Mechanism of Hexagonal-Cubic Transition
p1-9 (p16): 10.5.1 Model for the Transition Mechanism
p1-10 (p19): 10.5.3 Facilitation of Synthesis of c-BN by Mechanochemical Effect
p1-11 (p19): 10.5.2 Atomic Movement during the Conversion from w-to c-BN
p1-12 (p22): 10.6 Prospect
p1-13 (p22): 10.7 Conclusions
p1-14 (p24): References
p2 (p26): 11 Nanomaterials for Energy Storage:Batteries and Fuel Cells
p2-2 (p26): 11.1 General Overview of Batteries and Fuel Cells
p2-3 (p26): 11.1.1 Introduction
p2-4 (p27): 11.1.2 An Overview of Batteries
p2-5 (p29): 11.1.3 An Overview of Fuel Cells
p2-6 (p33): 11.1.4 Importance of Nanomaterials in Batteries and Fuel Cells
p2-7 (p34): 11.2 Batteries and Nanomaterials
p2-8 (p34): 11.2.1 Classifications of Advanced Batteries
p2-9 (p37): 11.2.2 Major Components of Batteries
p2-10 (p39): 11.2.3 Applications of Nanomaterials in Advanced Batteries
p2-11 (p46): 11.2.4 Most Recent Developments
p2-12 (p46): 11.3 Fuel Cells and Nanomaterials
p2-13 (p46): 11.3.1 Classifications of Fuel Cell Systems
p2-14 (p49): 11.3.2 Major Components and Nanomaterials in Fuel Cells
p2-15 (p50): 11.3.3 Applications of Nanomaterials in Fuel Cells
p2-16 (p60): 11.3.4 Summary
p2-17 (p60): 11.4 Conclusions
p2-18 (p61): References
p2-19 (p69): 12.1 Introduction
p3 (p69): 12 Nanocomposites
p3-2 (p74): 12.2 General Features of Nanocomposites
p3-3 (p74): 12.2.1 Physical Sensitivity:Three Effects of Nanoparticles on Material Properties
p3-4 (p75): 12.2.2 Chemical Reactivity
p3-5 (p76): 12.2.3 Promising Improvements in Nanocomposites
p3-6 (p77): 12.2.4 Origin of Nanophases and Generating Stages
p3-7 (p79): 12.3 Ceramic-Based Nanocomposites
p3-8 (p80): 12.3.1 Strength Improvement of Ceramic-Based Nanocomposites
p3-9 (p84): 12.3.2 Toughening Effect of Nanoceramic Composites
p3-10 (p86): 12.3.3 Improvements of Nanoceramic Composites on Hardness and Wear
p3-11 (p86): 12.3.4 Superplasticity of Ceramic Nanocomposites
p3-12 (p88): 12.3.5 Improvement of Nanoceramic Composites on Creep
p3-13 (p89): 12.4 Metallic-Based Nanocomposites
p3-14 (p89): 12.3.6 Ceramic-Based Nanometallic Composites
p3-15 (p91): 12.5 Polymer-Based Nanocomposites
p3-16 (p93): 12.6 Summaries of Nanocomposites
p3-17 (p94): References
p4 (p96): 13 Growth and Properties of Single-Walled Carbon Nanotubes
p4-2 (p96): 13.1 Introduction
p4-3 (p97): 13.2 Synthetic Strategies for Various Nanotube Architectures
p4-4 (p97): 13.2.1 Chemical Vapor Deposition
p4-5 (p99): 13.2.2 Growth of Self-oriented Multi-Walled Nanotubes
p4-6 (p100): 13.2.3 Enable the Growth of Single-Walled Nanotubes by CVD
p4-7 (p102): 13.2.5 Growth of lsolated Single-Walled Nanotubes on Controlled Surface Sites
p4-8 (p102): 13.2.4 Growth Mechanism of SWNT
p4-9 (p104): 13.2.6 Growth of Suspended SWNTs With Directed Orientations
p4-10 (p106): 13.3 Physics in Atomically Well-Defined Nanowires
p4-11 (p106): 13.3.1 Integrated Circuits of Individual Single-Walled Nanotubes
p4-12 (p107): 13.3.2 Electron Transport Properties of Metallic Nanotubes
p4-13 (p110): 13.3.3 Electron Transport Properties of Semiconducting Nanotubes
p4-14 (p114): 13.3.4 Electron Transport Properties of Semiconducting Nanotubes with Small Band Gaps
p4-15 (p121): 13.4 Integrated Nanotube Devices
p4-16 (p121): 13.4.1 Nanotube Molecular Transistors With High Gains
p4-17 (p123): 13.5 Conclusions
p4-18 (p125): References
p4-19 (p128): 14.2 Theoretical Prediction
p4-20 (p128): 14.1 Introduction
p5 (p128): 14 Nanomaterials from Light-Element Composites
p5-2 (p129): 14.2.1 Empirical Model
p5-3 (p130): 14.2.2 First-Principles Study
p5-4 (p131): 14.3 Synthesis by Chemical Vapor Deposition(CVD)
p5-5 (p132): 14.3.1 Bias-Assisted Hot Filament CVD
p5-6 (p133): 14.3.2 Electron Cyclotron Resonance Microwave Plasma-Assisted CVD(MPCVD)
p5-7 (p134): 14.4 Uniform Size-Controlled Nanocrystalline Diamond Films
p5-8 (p135): 14.4.1 Deposition with CN4/N2 Precursor
p5-9 (p139): 14.4.2 Influence of Additional H2 on Microstructure
p5-10 (p141): 14.4.3 Nitrogen Incorporation
p5-11 (p141): 14.4.4 Surface Stable Growth Model
p5-12 (p142): 14.4.5 Field Electron Emission and Transport Tunneling Mechanism
p5-13 (p144): 14.5 Nanocrystalline Carbon Nitride Films
p5-14 (p145): 14.5.1 αandβStructures
p5-15 (p146): 14.5.2 Tetragonal Structure
p5-16 (p147): 14.5.3 Monoclinic Structure
p5-17 (p147): 14.5.4 Fullerene-like Structure
p5-18 (p148): 14.5.5 Carbon Nitride Diamond Silicon Layers
p5-19 (p149): 14.5.6 Physical and Chemical Properties
p5-20 (p150): 14.6 Nanocrystalline Silicon Carbonitride Films
p5-21 (p151): 14.6.1 Deposition With Nitrogen and Methane
p5-22 (p154): 14.6.2 Deposition with Nitrogen.Methane and Hydrogen:Influence of Hydrogen Flow Ratio
p5-23 (p155): 14.6.3 Lattice-Matched Growth Model
p5-24 (p156): 14.7.1 Morphology and Composition
p5-25 (p156): 14.7 Turbostratic Boron Carbonitride Films
p5-26 (p157): 14.7.2 Turbostratic Structure
p5-27 (p159): 14.7.3 Raman and Photoluminescence
p5-28 (p160): 14.7.4 Field Electron Emission
p5-29 (p161): 14.8 Polymerized Nitrogen-Incorporated Carbon Nanobells
p5-30 (p161): 14.8.1 Polymerized Nanobell Structure
p5-31 (p163): 14.8.2 Chemical Separation and Application
p5-32 (p164): 14.8.3 Wall-Side Field Emission Mechanism
p5-33 (p165): 14.9 Highly Oriented Boron Carbonitride Nanofibers
p5-34 (p165): 14.9.1 Microstructure and Composition
p5-35 (p167): 14.10 Conclusions
p5-36 (p167): 14.9.2 Field Electron Emission
p5-37 (p169): References
p6 (p174): 15 Self-Assembled Ordered Nanostructures
p6-2 (p174): 15.1 Ordered Self-Assembled Nanocrystals
p6-3 (p177): 15.1.1 Processing of Nanocrystals for Self-Assembly
p6-4 (p182): 15.1.2 Technical Aspects of Self-Assembling
p6-5 (p185): 15.1.3 Structure of the Nanocrystal Self-Assembly
p6-6 (p190): 15.1.4 Properties of the Nanocrystal Self-Assembly
p6-7 (p195): 15.2 Ordered Self-Assembly of Mesoporous Materials
p6-8 (p196): 15.2.1 Processing
p6-9 (p197): 15.2.2 The Formation Mechanisms
p6-10 (p199): 15.2.3 Applications
p6-11 (p203): 15.2.4 Mesoporous Materials of Transition Metal Oxides
p6-12 (p205): 15.3 Hierarchically Structured Nanomaterials
p6-13 (p207): 15.4 Summary
p6-14 (p207): References
p7 (p211): 16 Molecularly Organized Nanostructural Materials
p7-2 (p211): 16.1 Introduction
p7-3 (p211): 16.1.1 Nanostructural Materials in Energy Sciences
p7-4 (p212): 16.1.2 Nanophase Materials in Environmental and Health Sciences
p7-5 (p213): 16.1.3 Molecularly Organized Nanostructural Materials
p7-6 (p213): 16.2 Molecularly Directed Nucleation and Growth.and Matrix Mediated Nanocomposites
p7-7 (p213): 16.2.1 Molecularly Directed Nanoscale Materials in Nature
p7-8 (p214): 16.2.2 Directed Nucleation and Growth of Thin Films
p7-9 (p217): 16.2.3 Matrix Mediated Nanocomposites
p7-10 (p221): 16.3 Surfactant Directed Hybrid Nanoscale Materials
p7-11 (p222): 16.3.1 Ordered Nanoporous Materials
p7-12 (p227): 16.3.2 Hybrid Nanoscale Materials
p7-13 (p233): 16.4 Summary and Prospects
p7-14 (p234): References
p8 (p237): 17 Nanostructured Bio-inspired Materials
p8-2 (p237): 17.1 Introduction
p8-3 (p240): 17.2 Case Study Ⅰ:Teeth
p8-4 (p241): 17.2.1 Control over Mineralization at Nanometer Scale
p8-5 (p244): 17.2.2 Hierarchical Structure in Biological Materials
p8-6 (p246): 17.3 Case Study Ⅱ:Mesoscopic Silica Films
p8-7 (p248): 17.3.1 Hierarchical Film Structure
p8-8 (p253): 17.3.2 Towards Control of the Properties
p8-9 (p254): 17.4 Conclusion
p8-10 (p254): References
p9 (p257): 18 Nanophase Metal Oxide Materials for Electrochromic Displays
p9-2 (p257): 18.1 Introduction
p9-3 (p258): 18.2 Basic Concepts in Electrochromism
p9-4 (p258): 18.2.1 Electrochromic Display Device
p9-5 (p260): 18.2.2 Electrochromic Materials
p9-6 (p261): 18.2.3 Perceived Color and Contrast Ratio
p9-7 (p262): 18.2.4 Coloration Efficiency and Response Time
p9-8 (p262): 18.2.5 Write-Erase Efficiency and Cycle Life
p9-9 (p263): 18.3 Nanophase Metal Oxide Electrochromic Materials
p9-10 (p264): 18.3.1 Synthesis of Supported ATO Nanocrystallites
p9-11 (p266): 18.3.2 Characterization of Supported ATO Nanocrystallites
p9-12 (p268): 18.4 Construction of Printed.Flexible Displays Using Interdigitated Electrodes
p9-13 (p268): 18.4.1 Design Strategy
p9-14 (p270): 18.4.2 Materials Selection
p9-15 (p272): 18.4.3 Display Examples
p9-16 (p274): 18.5 Contrast of Printed Electrochromic Displays Using ATO Nanophase Materials
p9-17 (p275): 18.5.1 Effect of Antimony Doping on Contrast Ratio
p9-18 (p281): 18.5.2 Effect of Annealing Temperature on Contrast Ratio
p9-19 (p285): 18.5.3 Other Factors That Affect the Contrast Ratio
p9-20 (p289): References
p9-21 (p289): 18.6 Summary
p10 (p292): 19 Engineered Microstructures for Nonlinear Optics
p10-2 (p292): 19.1 Introduction
p10-3 (p293): 19.2 Preparation of DSLs
p10-4 (p293): 19.2.1 Preparation of DSLs by Modulation of Ferroelectric Domains
p10-5 (p296): 19.2.2 Preparation of DSL by Using Photorefractive Effect
p10-6 (p297): 19.3 Outline of the Nonlinear Optics
p10-7 (p298): 19.4 Wave Vector Conservation
p10-8 (p301): 19.5 Nonlinear Optical Frequency Conversion in 1-D Periodic DSLs
p10-9 (p303): 19.6 Nonlinear Optical Frequency Conversion in 1-D QPDSLs
p10-10 (p304): 19.6.1 The Construction of QPDSL
p10-11 (p305): 19.6.2 Theoretical Treatment of the Nonlinear Optical Processes in QPDSLs
p10-12 (p309): 19.6.3 The Effective Nonlinear Optical Coefficients
p10-13 (p309): 19.6.4 QPM Multiwavelength SHG
p10-14 (p310): 19.6.5 Direct THG
p10-15 (p311): 19.7 Optical Bistability in a 2-D DSL
p10-16 (p312): 19.7.1 Bloch Wave Approach
p10-17 (p315): 19.7.2 Four-Path Switch:Linear Case
p10-18 (p316): 19.7.3 A New Type of Optical Bistability Mechanism:Nonlinear Case with One Incident Wave
p10-19 (p319): 19.7.4 A New Type of Optical Bistability Mechanism:Nonlinear Case With Two Incident Waves
p10-20 (p320): 19.8 Outlook
p10-21 (p322): References
p10-22 (p329): Index
p1-2 (p1): 10.1 Introduction
p1-3 (p2): 10.2 Processing Method to Get c-BN
p1-4 (p3): 10.3 Characterization Method
p1-5 (p4): 10.4 Phase Transition of Boron Nitride
p1-6 (p4): 10.4.1 Nanostructure of the Starting Material
p1-7 (p6): 10.4.2 Phases and Nanostructures Appearing during the Hexagonal-Cubic Transition
p1-8 (p16): 10.5 Mechanism of Hexagonal-Cubic Transition
p1-9 (p16): 10.5.1 Model for the Transition Mechanism
p1-10 (p19): 10.5.3 Facilitation of Synthesis of c-BN by Mechanochemical Effect
p1-11 (p19): 10.5.2 Atomic Movement during the Conversion from w-to c-BN
p1-12 (p22): 10.6 Prospect
p1-13 (p22): 10.7 Conclusions
p1-14 (p24): References
p2 (p26): 11 Nanomaterials for Energy Storage:Batteries and Fuel Cells
p2-2 (p26): 11.1 General Overview of Batteries and Fuel Cells
p2-3 (p26): 11.1.1 Introduction
p2-4 (p27): 11.1.2 An Overview of Batteries
p2-5 (p29): 11.1.3 An Overview of Fuel Cells
p2-6 (p33): 11.1.4 Importance of Nanomaterials in Batteries and Fuel Cells
p2-7 (p34): 11.2 Batteries and Nanomaterials
p2-8 (p34): 11.2.1 Classifications of Advanced Batteries
p2-9 (p37): 11.2.2 Major Components of Batteries
p2-10 (p39): 11.2.3 Applications of Nanomaterials in Advanced Batteries
p2-11 (p46): 11.2.4 Most Recent Developments
p2-12 (p46): 11.3 Fuel Cells and Nanomaterials
p2-13 (p46): 11.3.1 Classifications of Fuel Cell Systems
p2-14 (p49): 11.3.2 Major Components and Nanomaterials in Fuel Cells
p2-15 (p50): 11.3.3 Applications of Nanomaterials in Fuel Cells
p2-16 (p60): 11.3.4 Summary
p2-17 (p60): 11.4 Conclusions
p2-18 (p61): References
p2-19 (p69): 12.1 Introduction
p3 (p69): 12 Nanocomposites
p3-2 (p74): 12.2 General Features of Nanocomposites
p3-3 (p74): 12.2.1 Physical Sensitivity:Three Effects of Nanoparticles on Material Properties
p3-4 (p75): 12.2.2 Chemical Reactivity
p3-5 (p76): 12.2.3 Promising Improvements in Nanocomposites
p3-6 (p77): 12.2.4 Origin of Nanophases and Generating Stages
p3-7 (p79): 12.3 Ceramic-Based Nanocomposites
p3-8 (p80): 12.3.1 Strength Improvement of Ceramic-Based Nanocomposites
p3-9 (p84): 12.3.2 Toughening Effect of Nanoceramic Composites
p3-10 (p86): 12.3.3 Improvements of Nanoceramic Composites on Hardness and Wear
p3-11 (p86): 12.3.4 Superplasticity of Ceramic Nanocomposites
p3-12 (p88): 12.3.5 Improvement of Nanoceramic Composites on Creep
p3-13 (p89): 12.4 Metallic-Based Nanocomposites
p3-14 (p89): 12.3.6 Ceramic-Based Nanometallic Composites
p3-15 (p91): 12.5 Polymer-Based Nanocomposites
p3-16 (p93): 12.6 Summaries of Nanocomposites
p3-17 (p94): References
p4 (p96): 13 Growth and Properties of Single-Walled Carbon Nanotubes
p4-2 (p96): 13.1 Introduction
p4-3 (p97): 13.2 Synthetic Strategies for Various Nanotube Architectures
p4-4 (p97): 13.2.1 Chemical Vapor Deposition
p4-5 (p99): 13.2.2 Growth of Self-oriented Multi-Walled Nanotubes
p4-6 (p100): 13.2.3 Enable the Growth of Single-Walled Nanotubes by CVD
p4-7 (p102): 13.2.5 Growth of lsolated Single-Walled Nanotubes on Controlled Surface Sites
p4-8 (p102): 13.2.4 Growth Mechanism of SWNT
p4-9 (p104): 13.2.6 Growth of Suspended SWNTs With Directed Orientations
p4-10 (p106): 13.3 Physics in Atomically Well-Defined Nanowires
p4-11 (p106): 13.3.1 Integrated Circuits of Individual Single-Walled Nanotubes
p4-12 (p107): 13.3.2 Electron Transport Properties of Metallic Nanotubes
p4-13 (p110): 13.3.3 Electron Transport Properties of Semiconducting Nanotubes
p4-14 (p114): 13.3.4 Electron Transport Properties of Semiconducting Nanotubes with Small Band Gaps
p4-15 (p121): 13.4 Integrated Nanotube Devices
p4-16 (p121): 13.4.1 Nanotube Molecular Transistors With High Gains
p4-17 (p123): 13.5 Conclusions
p4-18 (p125): References
p4-19 (p128): 14.2 Theoretical Prediction
p4-20 (p128): 14.1 Introduction
p5 (p128): 14 Nanomaterials from Light-Element Composites
p5-2 (p129): 14.2.1 Empirical Model
p5-3 (p130): 14.2.2 First-Principles Study
p5-4 (p131): 14.3 Synthesis by Chemical Vapor Deposition(CVD)
p5-5 (p132): 14.3.1 Bias-Assisted Hot Filament CVD
p5-6 (p133): 14.3.2 Electron Cyclotron Resonance Microwave Plasma-Assisted CVD(MPCVD)
p5-7 (p134): 14.4 Uniform Size-Controlled Nanocrystalline Diamond Films
p5-8 (p135): 14.4.1 Deposition with CN4/N2 Precursor
p5-9 (p139): 14.4.2 Influence of Additional H2 on Microstructure
p5-10 (p141): 14.4.3 Nitrogen Incorporation
p5-11 (p141): 14.4.4 Surface Stable Growth Model
p5-12 (p142): 14.4.5 Field Electron Emission and Transport Tunneling Mechanism
p5-13 (p144): 14.5 Nanocrystalline Carbon Nitride Films
p5-14 (p145): 14.5.1 αandβStructures
p5-15 (p146): 14.5.2 Tetragonal Structure
p5-16 (p147): 14.5.3 Monoclinic Structure
p5-17 (p147): 14.5.4 Fullerene-like Structure
p5-18 (p148): 14.5.5 Carbon Nitride Diamond Silicon Layers
p5-19 (p149): 14.5.6 Physical and Chemical Properties
p5-20 (p150): 14.6 Nanocrystalline Silicon Carbonitride Films
p5-21 (p151): 14.6.1 Deposition With Nitrogen and Methane
p5-22 (p154): 14.6.2 Deposition with Nitrogen.Methane and Hydrogen:Influence of Hydrogen Flow Ratio
p5-23 (p155): 14.6.3 Lattice-Matched Growth Model
p5-24 (p156): 14.7.1 Morphology and Composition
p5-25 (p156): 14.7 Turbostratic Boron Carbonitride Films
p5-26 (p157): 14.7.2 Turbostratic Structure
p5-27 (p159): 14.7.3 Raman and Photoluminescence
p5-28 (p160): 14.7.4 Field Electron Emission
p5-29 (p161): 14.8 Polymerized Nitrogen-Incorporated Carbon Nanobells
p5-30 (p161): 14.8.1 Polymerized Nanobell Structure
p5-31 (p163): 14.8.2 Chemical Separation and Application
p5-32 (p164): 14.8.3 Wall-Side Field Emission Mechanism
p5-33 (p165): 14.9 Highly Oriented Boron Carbonitride Nanofibers
p5-34 (p165): 14.9.1 Microstructure and Composition
p5-35 (p167): 14.10 Conclusions
p5-36 (p167): 14.9.2 Field Electron Emission
p5-37 (p169): References
p6 (p174): 15 Self-Assembled Ordered Nanostructures
p6-2 (p174): 15.1 Ordered Self-Assembled Nanocrystals
p6-3 (p177): 15.1.1 Processing of Nanocrystals for Self-Assembly
p6-4 (p182): 15.1.2 Technical Aspects of Self-Assembling
p6-5 (p185): 15.1.3 Structure of the Nanocrystal Self-Assembly
p6-6 (p190): 15.1.4 Properties of the Nanocrystal Self-Assembly
p6-7 (p195): 15.2 Ordered Self-Assembly of Mesoporous Materials
p6-8 (p196): 15.2.1 Processing
p6-9 (p197): 15.2.2 The Formation Mechanisms
p6-10 (p199): 15.2.3 Applications
p6-11 (p203): 15.2.4 Mesoporous Materials of Transition Metal Oxides
p6-12 (p205): 15.3 Hierarchically Structured Nanomaterials
p6-13 (p207): 15.4 Summary
p6-14 (p207): References
p7 (p211): 16 Molecularly Organized Nanostructural Materials
p7-2 (p211): 16.1 Introduction
p7-3 (p211): 16.1.1 Nanostructural Materials in Energy Sciences
p7-4 (p212): 16.1.2 Nanophase Materials in Environmental and Health Sciences
p7-5 (p213): 16.1.3 Molecularly Organized Nanostructural Materials
p7-6 (p213): 16.2 Molecularly Directed Nucleation and Growth.and Matrix Mediated Nanocomposites
p7-7 (p213): 16.2.1 Molecularly Directed Nanoscale Materials in Nature
p7-8 (p214): 16.2.2 Directed Nucleation and Growth of Thin Films
p7-9 (p217): 16.2.3 Matrix Mediated Nanocomposites
p7-10 (p221): 16.3 Surfactant Directed Hybrid Nanoscale Materials
p7-11 (p222): 16.3.1 Ordered Nanoporous Materials
p7-12 (p227): 16.3.2 Hybrid Nanoscale Materials
p7-13 (p233): 16.4 Summary and Prospects
p7-14 (p234): References
p8 (p237): 17 Nanostructured Bio-inspired Materials
p8-2 (p237): 17.1 Introduction
p8-3 (p240): 17.2 Case Study Ⅰ:Teeth
p8-4 (p241): 17.2.1 Control over Mineralization at Nanometer Scale
p8-5 (p244): 17.2.2 Hierarchical Structure in Biological Materials
p8-6 (p246): 17.3 Case Study Ⅱ:Mesoscopic Silica Films
p8-7 (p248): 17.3.1 Hierarchical Film Structure
p8-8 (p253): 17.3.2 Towards Control of the Properties
p8-9 (p254): 17.4 Conclusion
p8-10 (p254): References
p9 (p257): 18 Nanophase Metal Oxide Materials for Electrochromic Displays
p9-2 (p257): 18.1 Introduction
p9-3 (p258): 18.2 Basic Concepts in Electrochromism
p9-4 (p258): 18.2.1 Electrochromic Display Device
p9-5 (p260): 18.2.2 Electrochromic Materials
p9-6 (p261): 18.2.3 Perceived Color and Contrast Ratio
p9-7 (p262): 18.2.4 Coloration Efficiency and Response Time
p9-8 (p262): 18.2.5 Write-Erase Efficiency and Cycle Life
p9-9 (p263): 18.3 Nanophase Metal Oxide Electrochromic Materials
p9-10 (p264): 18.3.1 Synthesis of Supported ATO Nanocrystallites
p9-11 (p266): 18.3.2 Characterization of Supported ATO Nanocrystallites
p9-12 (p268): 18.4 Construction of Printed.Flexible Displays Using Interdigitated Electrodes
p9-13 (p268): 18.4.1 Design Strategy
p9-14 (p270): 18.4.2 Materials Selection
p9-15 (p272): 18.4.3 Display Examples
p9-16 (p274): 18.5 Contrast of Printed Electrochromic Displays Using ATO Nanophase Materials
p9-17 (p275): 18.5.1 Effect of Antimony Doping on Contrast Ratio
p9-18 (p281): 18.5.2 Effect of Annealing Temperature on Contrast Ratio
p9-19 (p285): 18.5.3 Other Factors That Affect the Contrast Ratio
p9-20 (p289): References
p9-21 (p289): 18.6 Summary
p10 (p292): 19 Engineered Microstructures for Nonlinear Optics
p10-2 (p292): 19.1 Introduction
p10-3 (p293): 19.2 Preparation of DSLs
p10-4 (p293): 19.2.1 Preparation of DSLs by Modulation of Ferroelectric Domains
p10-5 (p296): 19.2.2 Preparation of DSL by Using Photorefractive Effect
p10-6 (p297): 19.3 Outline of the Nonlinear Optics
p10-7 (p298): 19.4 Wave Vector Conservation
p10-8 (p301): 19.5 Nonlinear Optical Frequency Conversion in 1-D Periodic DSLs
p10-9 (p303): 19.6 Nonlinear Optical Frequency Conversion in 1-D QPDSLs
p10-10 (p304): 19.6.1 The Construction of QPDSL
p10-11 (p305): 19.6.2 Theoretical Treatment of the Nonlinear Optical Processes in QPDSLs
p10-12 (p309): 19.6.3 The Effective Nonlinear Optical Coefficients
p10-13 (p309): 19.6.4 QPM Multiwavelength SHG
p10-14 (p310): 19.6.5 Direct THG
p10-15 (p311): 19.7 Optical Bistability in a 2-D DSL
p10-16 (p312): 19.7.1 Bloch Wave Approach
p10-17 (p315): 19.7.2 Four-Path Switch:Linear Case
p10-18 (p316): 19.7.3 A New Type of Optical Bistability Mechanism:Nonlinear Case with One Incident Wave
p10-19 (p319): 19.7.4 A New Type of Optical Bistability Mechanism:Nonlinear Case With Two Incident Waves
p10-20 (p320): 19.8 Outlook
p10-21 (p322): References
p10-22 (p329): Index
备用描述
These books, with of a total of 40 chapters, are a comprehensive and complete introductory text on the synthesis, characterization, and applications of nanomaterials. They are aimed at graduate students and researchers whose background is chemistry, physics, materials science, chemical engineering, electrical engineering, and biomedical science. The first part emphasizes the chemical and physical approaches used for synthesis of nanomaterials. The second part emphasizes the techniques used for characterizing the structure and properties of nanomaterials, aiming at describing the physical mechanism, data interpretation, and detailed applications of the techniques. The final part focuses on systems of different nanostructural materials with novel properties and applications.
备用描述
v. 1. Synthesis
v. 2. Characterization
v. 3.,pt.1-2. Materials systems and applications I-II.
v. 2. Characterization
v. 3.,pt.1-2. Materials systems and applications I-II.
备用描述
Nanoparticles play a vital role in high performance materials in high technology industries.
备用描述
Title from ebook title screen (viewed July 9, 2004).
开源日期
2024-06-13
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.