nexusstc/Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies/5820482606084696ea9c00542da6b13b.pdf
Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies 🔍
Xingye Zhu, Alexander Fordjour, Junping Liu, Shouqi Yuan
Springer Nature Singapore : Imprint: Springer, Smart Agriculture, Smart Agriculture, 3, 2023
英语 [en] · PDF · 5.7MB · 2023 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
This book presents a newly designed dynamic fluidic sprinkler (DFS) to improve hydraulic performance of the existing complete fluidic sprinkler (CFS) under low-pressure conditions. Sprinkler irrigation has high prospects for improving water management in crop production. In recent years, low-pressure water-saving has become an important research content in the field of sprinkler irrigation. It introduces the effect of riser height on rotation uniformity and application rate of the dynamic fluidic sprinkler. It also discusses the intelligent sprinkler irrigation technologies for autonomous and remote sensing system. This book will be a useful reference for researchers and professionals in the field of agriculture and irrigation.
Erscheinungsdatum: 14.01.2023
Erscheinungsdatum: 14.01.2023
备用文件名
lgli/Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies.pdf
备用文件名
lgrsnf/Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies.pdf
备用文件名
zlib/Engineering/Hydraulic Engineering/Xingye Zhu, Alexander Fordjour, Junping Liu, Shouqi Yuan/Dynamic Fluidic Sprinkler and Intelligent Sprinkler Irrigation Technologies_24502002.pdf
备选作者
Zhu, Xingye; Fordjour, Alexander; Liu, Junping; Yuan, Shouqi
备选作者
Xingye Zhu, Alexander Fordjour, Shouqi Yuan, Junping Liu
备用出版商
Springer Nature Singapore Pte Ltd Fka Springer Science + Business Media Singapore Pte Ltd
备用版本
Smart Agriculture, 3, 1st ed. 2023, Singapore, Singapore, 2023
备用版本
Smart agriculture, v. 3, 1st ed. 2023, Singapore, 2023
备用版本
Smart agriculture, volume 3, Singapore, 2023
备用版本
Springer Nature, Singapore, 2023
元数据中的注释
{"container_title":"Smart Agriculture","content":{"parsed_at":1707315758,"parser":{"name":"textparser","version":"0.1.77"},"source":{"name":"grobid","version":"0.8.0"}},"isbns":["9789811983184","9789811983191","9811983186","9811983194"],"issns":["2731-3476","2731-3484"],"last_page":147,"publisher":"Springer","series":"Smart Agriculture, 3"}
备用描述
Contents
1 Introduction
1.1 Research Background
1.2 Types of Sprinklers Irrigation
1.2.1 Impact Sprinkler
1.2.2 Complete Fluidic Sprinkler
1.2.3 Hand-Move Sprinkler System
1.2.4 Solid Set and Permanent Systems
1.3 Sprinkler Hydraulic Performance Parameters
1.3.1 Sprinkler Discharge
1.3.2 Patterns Radius (Throwing Distance)
1.3.3 Water Application Rate or Intensity
1.3.4 Distribution Pattern
1.3.5 Sprinkler Droplet Size
1.3.6 Sprinkler Irrigation Uniformity
1.3.7 Methods of Measuring Droplet Size Distributions
References
2 Optimization of the Fluidic Component of Complete Fluidic Sprinkler and Testing of the New Design Sprinkler
2.1 Introduction
2.2 Complete Fluidic and Outside Signal Sprinklers
2.3 Design of Newly Dynamic Fluidic Sprinkler Head and Working Principle
2.3.1 Working Principle
2.3.2 Design of the Nozzles
2.3.3 Experimental Setup and Procedure
2.3.4 Results and Analysis of Orthogonal Tests
2.3.5 Brief Summary
2.4 Evaluation of Hydraulic Performance Characteristics of a Newly Designed Dynamic Fluidic Sprinkler
2.4.1 Design of New Dynamic Fluidic Sprinkler Head
2.4.2 Working Principle
2.4.3 Experimental Procedures
2.4.4 Computed Coefficient of Uniformity
2.4.5 Results and Discussion
2.4.6 Conclusion
References
3 Numerical Simulation and Experimental Study on Internal Flow Characteristic in the Dynamic Fluidic Sprinkler
3.1 Introduction
3.2 Materials and Methods
3.2.1 Design of Newly Dynamic Fluidic Sprinkler Type
3.2.2 Design of the Nozzles
3.2.3 Numerical Simulation
3.3 Results and Discussion
3.3.1 Relationship Between Velocity Distribution and Nozzle Sizes
3.3.2 Relationship Between Velocity and Length of the Tube
3.3.3 Comparison of the Numerical Simulation, Calculated and Experimental Results
3.3.4 Comparison of Rotation Speed and the Nozzle Sizes
3.3.5 Relationship Between Rotation Speed and Length of the Tube
3.3.6 Effect of Internal Velocity Distribution on Hydraulic Performance
References
4 Effect of Riser Height on Rotation Uniformity and Application Rate of the Dynamic Fluidic Sprinkler
4.1 Introduction
4.2 Materials and Methods
4.2.1 Experimental Procedures
4.2.2 Evaluation of Sprinkler Performance
4.2.3 Overlap Water Distribution
4.3 Results and Discussion
4.3.1 Quadrant Completion Time
4.3.2 Deviation in Water Application Intensity
4.3.3 Comparison of Water Distribution Profiles
4.3.4 Overlap Distribution Analysis
References
5 Comparative Evaluation of Hydraulic Performance of a Newly Design Dynamic Fluidic, Complete Fluidic, and D3000 Rotating Spray Sprinklers
5.1 Introduction
5.2 Structure and the Working Principle of Three Different Sprinkler Heads
5.2.1 Experimental Setup and Procedure
5.2.2 Calculation of Combined CUs, Droplet Sizes, and Velocities
5.3 Results and Discussion
5.3.1 Comparison of a Radius of Throw and Coefficient of Discharge at Different Operating Pressures
5.3.2 Relationship Between Rotation Speed for Three Different Sprinkler Heads
5.3.3 Comparison of Water Distribution Profiles
5.3.4 Comparison of the Computed Uniformity Coefficient
5.3.5 Spray Distributions in the Middle and End of the Range
5.3.6 Droplet Size Distribution
5.3.7 Droplet Characterization Statistic
5.3.8 Droplet Velocity Distribution
References
6 Modelling of Water Drop Movement and Distribution in No Wind and Windy Conditions for Different Nozzle Sizes
6.1 Introduction
6.2 Materials and Method
6.2.1 Boundary Condition
6.2.2 Model of Droplet Motion
6.2.3 Empirical Model of the Drag Coefficient
6.2.4 Droplet Travel Distance
6.2.5 Estimation of the Droplet Size Distribution
6.2.6 Experimental Procedure
6.2.7 Model Verification
6.3 Results and Discussion
6.3.1 Comparison of the Measured Versus Predicted Droplet Size Diameter
6.3.2 Comparison of the Measured Versus Predicted Droplet Sizes for Different Pressures
6.3.3 Comparison Between Other Simulated Travel Distance
6.3.4 Compare the Droplet Size Distribution Model Prediction in Zero and Windy Conditions
References
7 Review of Intelligent Sprinkler Irrigation Technologies for Autonomous and Remote Sensing System
7.1 Introduction
7.2 Autonomous Sensor Irrigation Management Technologies
7.2.1 Remote Access and Communications
7.2.2 Distributed Wireless Sensor Networks
7.2.3 Sensors and Integrated Data Management Schemes
7.2.4 Sprinkler Control Options
7.3 Conclusions and Future Work
References
1 Introduction
1.1 Research Background
1.2 Types of Sprinklers Irrigation
1.2.1 Impact Sprinkler
1.2.2 Complete Fluidic Sprinkler
1.2.3 Hand-Move Sprinkler System
1.2.4 Solid Set and Permanent Systems
1.3 Sprinkler Hydraulic Performance Parameters
1.3.1 Sprinkler Discharge
1.3.2 Patterns Radius (Throwing Distance)
1.3.3 Water Application Rate or Intensity
1.3.4 Distribution Pattern
1.3.5 Sprinkler Droplet Size
1.3.6 Sprinkler Irrigation Uniformity
1.3.7 Methods of Measuring Droplet Size Distributions
References
2 Optimization of the Fluidic Component of Complete Fluidic Sprinkler and Testing of the New Design Sprinkler
2.1 Introduction
2.2 Complete Fluidic and Outside Signal Sprinklers
2.3 Design of Newly Dynamic Fluidic Sprinkler Head and Working Principle
2.3.1 Working Principle
2.3.2 Design of the Nozzles
2.3.3 Experimental Setup and Procedure
2.3.4 Results and Analysis of Orthogonal Tests
2.3.5 Brief Summary
2.4 Evaluation of Hydraulic Performance Characteristics of a Newly Designed Dynamic Fluidic Sprinkler
2.4.1 Design of New Dynamic Fluidic Sprinkler Head
2.4.2 Working Principle
2.4.3 Experimental Procedures
2.4.4 Computed Coefficient of Uniformity
2.4.5 Results and Discussion
2.4.6 Conclusion
References
3 Numerical Simulation and Experimental Study on Internal Flow Characteristic in the Dynamic Fluidic Sprinkler
3.1 Introduction
3.2 Materials and Methods
3.2.1 Design of Newly Dynamic Fluidic Sprinkler Type
3.2.2 Design of the Nozzles
3.2.3 Numerical Simulation
3.3 Results and Discussion
3.3.1 Relationship Between Velocity Distribution and Nozzle Sizes
3.3.2 Relationship Between Velocity and Length of the Tube
3.3.3 Comparison of the Numerical Simulation, Calculated and Experimental Results
3.3.4 Comparison of Rotation Speed and the Nozzle Sizes
3.3.5 Relationship Between Rotation Speed and Length of the Tube
3.3.6 Effect of Internal Velocity Distribution on Hydraulic Performance
References
4 Effect of Riser Height on Rotation Uniformity and Application Rate of the Dynamic Fluidic Sprinkler
4.1 Introduction
4.2 Materials and Methods
4.2.1 Experimental Procedures
4.2.2 Evaluation of Sprinkler Performance
4.2.3 Overlap Water Distribution
4.3 Results and Discussion
4.3.1 Quadrant Completion Time
4.3.2 Deviation in Water Application Intensity
4.3.3 Comparison of Water Distribution Profiles
4.3.4 Overlap Distribution Analysis
References
5 Comparative Evaluation of Hydraulic Performance of a Newly Design Dynamic Fluidic, Complete Fluidic, and D3000 Rotating Spray Sprinklers
5.1 Introduction
5.2 Structure and the Working Principle of Three Different Sprinkler Heads
5.2.1 Experimental Setup and Procedure
5.2.2 Calculation of Combined CUs, Droplet Sizes, and Velocities
5.3 Results and Discussion
5.3.1 Comparison of a Radius of Throw and Coefficient of Discharge at Different Operating Pressures
5.3.2 Relationship Between Rotation Speed for Three Different Sprinkler Heads
5.3.3 Comparison of Water Distribution Profiles
5.3.4 Comparison of the Computed Uniformity Coefficient
5.3.5 Spray Distributions in the Middle and End of the Range
5.3.6 Droplet Size Distribution
5.3.7 Droplet Characterization Statistic
5.3.8 Droplet Velocity Distribution
References
6 Modelling of Water Drop Movement and Distribution in No Wind and Windy Conditions for Different Nozzle Sizes
6.1 Introduction
6.2 Materials and Method
6.2.1 Boundary Condition
6.2.2 Model of Droplet Motion
6.2.3 Empirical Model of the Drag Coefficient
6.2.4 Droplet Travel Distance
6.2.5 Estimation of the Droplet Size Distribution
6.2.6 Experimental Procedure
6.2.7 Model Verification
6.3 Results and Discussion
6.3.1 Comparison of the Measured Versus Predicted Droplet Size Diameter
6.3.2 Comparison of the Measured Versus Predicted Droplet Sizes for Different Pressures
6.3.3 Comparison Between Other Simulated Travel Distance
6.3.4 Compare the Droplet Size Distribution Model Prediction in Zero and Windy Conditions
References
7 Review of Intelligent Sprinkler Irrigation Technologies for Autonomous and Remote Sensing System
7.1 Introduction
7.2 Autonomous Sensor Irrigation Management Technologies
7.2.1 Remote Access and Communications
7.2.2 Distributed Wireless Sensor Networks
7.2.3 Sensors and Integrated Data Management Schemes
7.2.4 Sprinkler Control Options
7.3 Conclusions and Future Work
References
备用描述
"This book presents a newly designed dynamic fluidic sprinkler (DFS) to improve hydraulic performance of the existing complete fluidic sprinkler (CFS) under low-pressure conditions. Sprinkler irrigation has high prospects for improving water management in crop production. In recent years, low-pressure water-saving has become an important research content in the field of sprinkler irrigation. It introduces the effect of riser height on rotation uniformity and application rate of the dynamic fluidic sprinkler. It also discusses the intelligent sprinkler irrigation technologies for autonomous and remote sensing system. This book will be a useful reference for researchers and professionals in the field of agriculture and irrigation."--Page [4] of cover
开源日期
2023-01-21
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.