Real analysis and probability Second Edition = 实分析和概率论 (英文版·第2版) 🔍
(美)达德利(Dudley,R.M.)著, (美)R.M.Dudley著, Dley Du, R. M Dudley 北京:机械工业出版社, 2006, 2006
英语 [en] · 中文 [zh] · PDF · 140.6MB · 2006 · 📗 未知类型的图书 · 🚀/duxiu/zlibzh · Save
描述
This classic textbook offers a clear exposition of modern probability theory and of the interplay between the properties of metric spaces and probability measures. The first half of the book gives an exposition of real analysis: basic set theory, general topology, measure theory, integration, an introduction to functional analysis in Banach and Hilbert spaces, convex sets and functions and measure on topological spaces. The second half introduces probability based on measure theory, including laws of large numbers, ergodic theorems, the central limit theorem, conditional expectations and martingale's convergence. A chapter on stochastic processes introduces Brownian motion and the Brownian bridge. The edition has been made even more self-contained than before; it now includes a foundation of the real number system and the Stone-Weierstrass theorem on uniform approximation in algebras of functions. Several other sections have been revised and improved, and the comprehensive historical notes have been further amplified. A number of new exercises have been added, together with hints for solution.
备用文件名
zlibzh/no-category/(美)达德利(Dudley,R.M.)著, (美)R.M.Dudley著, Dley Du, R. M Dudley/实分析和概率论 第2版_31133008.pdf
备选标题
Real Analysis and Probability (Cambridge Studies in Advanced Mathematics, Series Number 74)
备选标题
Real analysis and probability = 实分析和概率论 / monograph
备选作者
Richard M. Dudley
备用出版商
Cambridge University Press (Virtual Publishing)
备用出版商
China Machine Press
备用版本
Cambridge studies in advanced mathematics ;, 74, Cambridge, New York, England, 2002
备用版本
Cambridge studies in advanced mathematics, 74, 2. ed., reprint, Cambridge, 2008
备用版本
Cambridge studies in advanced mathematics, 74, 2nd ed, Cambridge, 2005
备用版本
Jing dian yuan ban shu ku, Ying yin ban, Beijing, 2006
备用版本
Cambridge University Press, Cambridge, 2002
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
China, People's Republic, China
备用版本
2, 2002
元数据中的注释
Bookmarks: p1 (p1): 1 Foundations;Set Theory
p1-1 (p1): 1.1 Definitions for Set Theory and the Real Number System
p1-2 (p9): 1.2 Relations and Orderings
p1-3 (p12): 1.3 Transfinite Induction and Recursion
p1-4 (p16): 1.4 Cardinality
p1-5 (p18): 1.5 The Axiom of Choice and Its Equivalents
p2 (p24): 2 General Topology
p2-1 (p24): 2.1 Topologies,Metrics,and Continuity
p2-2 (p34): 2.2 Compactness and Product Topologies
p2-3 (p44): 2.3 Complete and Compact Metric Spaces
p2-4 (p48): 2.4 Some Metrics for Function Spaces
p2-5 (p58): 2.5 Completion and Completeness of Metric Spaces
p2-6 (p63): 2.6 Extension of Continuous Functions
p2-7 (p67): 2.7 Uniformities and Uniform Spaces
p2-8 (p71): 2.8 Compactification
p3 (p85): 3 Measures
p3-1 (p85): 3.1 Introduction to Measures
p3-2 (p94): 3.2 Semirings and Rings
p3-3 (p101): 3.3 Completion of Measures
p3-4 (p105): 3.4 Lebesgue Measure and Nonmeasurable Sets
p3-5 (p109): 3.5 Atomic and Nonatomic Measures
p4 (p114): 4 Integration
p4-1 (p114): 4.1 Simple Functions
p4-2 (p123): 4.2 Measurability
p4-3 (p130): 4.3 Convergence Theorems for Integrals
p4-4 (p134): 4.4 Product Measures
p4-5 (p142): 4.5 Daniell-Stone Integrals
p5 (p152): 5 Lp Spaces;Introduction to Functional Analysis
p5-1 (p152): 5.1 Inequalities for Integrals
p5-2 (p158): 5.2 Norms and Completeness of Lp
p5-3 (p160): 5.3 Hilbert Spaces
p5-4 (p165): 5.4Orthonormal Sets and Bases
p5-5 (p173): 5.5 LinearForms on Hilbert Spaces,Inclusions of Lp Spaces,and Relations Between Two Measures
p5-6 (p178): 5.6 Signed Measures
p6 (p188): 6 Convex Sets and Duality of Normed Spaces
p6-1 (p188): 6.1 Lipschitz,Continuous,and Bounded Functionals
p6-2 (p195): 6.2 Convex Sets and Their Separation
p6-3 (p203): 6.3 Convex Functions
p6-4 (p208): 6.4 Duality of Lp Spaces
p6-5 (p211): 6.5 Uniform Boundedness and Closed Graphs
p6-6 (p215): 6.6 The Brunn-Minkowski Inequality
p7 (p222): 7 Measure,Topology,and Differentiation
p7-1 (p222): 7.1 Baire and Borel σ-Algebras and Regularity of Measures
p7-2 (p228): 7.2 Lebesgue's Differentiation Theorems
p7-3 (p235): 7.3 The Regularity Extension
p7-4 (p239): 7.4 The Dual of C(K)and Fourier Series
p7-5 (p243): 7.5 Almost Uniform Convergence and Lusin's Theorem
p8 (p250): 8 Introduction to Probability Theory
p8-1 (p251): 8.1 Basic Definitions
p8-2 (p255): 8.2 Infinite Products of Probability Spaces
p8-3 (p260): 8.3 Laws of Large Numbers
p8-4 (p267): 8.4 Ergodic Theorems
p9 (p282): 9 Convergence of Laws and Central Limit Theorems
p9-1 (p282): 9.1 Distribution Functions and Densities
p9-2 (p287): 9.2 Convergence of Random Variables
p9-3 (p291): 9.3 Convergence of Laws
p9-4 (p298): 9.4 Characteristic Functions
p9-5 (p303): 9.5 Uniqueness of Characteristic Functions and a Central Limit Theorem
p9-6 (p315): 9.6 Triangular Arrays and Lindeberg's Theorem
p9-7 (p320): 9.7 Sums of Independent Real Random Variables
p9-8 (p325): 9.8 The Lévy Continuity Theorem;Infinitely Divisible and Stable Laws
p10 (p336): 10 Conditional Expectations and Martingales
p10-1 (p336): 10.1 Conditional Expectations
p10-2 (p341): 10.2 Regular Conditional Probabilities and Jensen's Inequality
p10-3 (p353): 10.3 Martingales
p10-4 (p358): 10.4 Optional Stopping and Uniform Integrability
p10-5 (p364): 10.5 Convergence of Martingales and Submartingales
p10-6 (p370): 10.6 Reversed Martingales and Submartingales
p10-7 (p374): 10.7 Subadditive and Superadditive Ergodic Theorems
p11 (p385): 11 Convergence of Laws on Separable Metric Spaces
p11-1 (p385): 11.1 Laws and Their Convergence
p11-2 (p390): 11.2 Lipschitz Functions
p11-3 (p393): 11.3 Metrics for Convergence of Laws
p11-4 (p399): 11.4 Convergence of Empirical Measures
p11-5 (p402): 11.5 Tightness and Uniform Tightness
p11-6 (p406): 11.6 Strassen's Theorem:Nearby Variables with Nearby Laws
p11-7 (p413): 11.7 A Uniformity for Laws and Almost Surely Converging Realizations of Converging Laws
p11-8 (p420): 11.8 Kantorovich-Rubinstein Theorems
p11-9 (p426): 11.9 U-Statistics
p12 (p439): 12 Stochastic Processes
p12-1 (p439): 12.1 Existence of Processes and Brownian Motion
p12-2 (p450): 12.2 The Strong Markov Property of Brownian Motion
p12-3 (p459): 12.3 Reflection Principles,The Brownian Bridge,and Laws of Suprema
p12-4 (p469): 12.4 Laws of Brownian Motion at Markov Times:Skorohod Imbedding
p12-5 (p476): 12.5 Laws of the Iterated Logarithm
p13 (p487): 13 Measurability:Borel Isomorphism and Analytic Sets
p13-1 (p487): 13.1 Borel Isomorphism
p13-2 (p493): 13.2 Analytic Sets
p14 (p503): Appendix A Axiomatic Set Theory
p14-1 (p503): A.1 Mathematical Logic
p14-2 (p505): A.2 Axioms for Set Theory
p14-3 (p510): A.3 Ordinals and Cardinals
p14-4 (p515): A.4 From Sets to Numbers
p15 (p521): Appendix B Complex Numbers,Vector Spaces,and Taylor's Theorem with Remainder
p16 (p526): Appendix C The Problem of Measure
p17 (p528): Appendix D Rearranging Sums of Nonnegative Terms
p18 (p530): Appendix E Pathologies of Compact Nonmetric Spaces
p19 (p541): Author Index
p20 (p546): Subject Index
p21 (p554): Notation Index
元数据中的注释
related_files:
filepath:13641639_实分析和概率论英文版第2版.zip — md5:08e9f60b9c5c95454067d172c0f33b57 — filesize:116472052
filepath:13641639_实分析和概率论英文版第2版.zip — md5:9c871347e2d537579defae839327c0ce — filesize:116472052
filepath:_13641639.zip — md5:be7bbd1a28c8e92238c785d8721e0fc4 — filesize:116485754
filepath:_13641639.zip — md5:9b8982d257dccd158d5fb5aefdbc064a — filesize:116726707
filepath:13641639.zip — md5:52f94bb3ea483a9de91377f687c17501 — filesize:116583629
filepath:13641639.rar — md5:9abed96cab87fae210f5bcad0faaed5f — filesize:116482548
filepath:13641639.zip — md5:eb6b7ffadr52865c86e2306660b8ba19 — filesize:116583629
filepath:/读秀/读秀3.0/读秀/3.0/3.0新/其余书库等多个文件/0062/44/13641639.zip
filepath:16b/福建师范062/13641639_实分析和概率论英文版第2版.zip
filepath:/读秀/读秀4.0/读秀/4.0/数据库37-4/13641639.zip
filepath:17a/福建师范62/13641639_实分析和概率论英文版第2版.zip
filepath:17c/福建师范62/13641639_实分析和概率论英文版第2版.zip
filepath:18b/福建师范62/13641639_实分析和概率论英文版第2版.zip
filepath:第二部分/200716/CCCCCCCC/44/13641639.zip
元数据中的注释
Includes bibliographical references and index.
备用描述
This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spaces and probability measures. The new edition has been made even more self-contained than before; it now includes a foundation of the real number system and the Stone-Weierstrass theorem on uniform approximation in algebras of functions. Several other sections have been revised and improved, and the comprehensive historical notes have been further amplified. A number of new exercises have been added, together with hints for solution.
开源日期
2024-06-13
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。