Human Motion Sensing and Recognition: A Fuzzy Qualitative Approach (Studies in Computational Intelligence (675)) 🔍
Honghai Liu, Zhaojie Ju, Xiaofei Ji, Chee Seng Chan, Mehdi Khoury (auth.)
Springer-Verlag Berlin Heidelberg, Studies in Computational Intelligence, Studies in Computational Intelligence 675, 1, 2017
英语 [en] · PDF · 12.8MB · 2017 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/upload/zlib · Save
描述
This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques.
With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues.
These techniques are shown to effectively address the above challenges by bridging the gap between symbolic cognitive functions and numerical sensing & control tasks in intelligent systems. The book not only serves as a valuable reference source for researchers and professionals in the fields of computer vision and robotics, but will also benefit practitioners and graduates/postgraduates seeking advanced information on fuzzy techniques and their applications in motion analysis.
With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues.
These techniques are shown to effectively address the above challenges by bridging the gap between symbolic cognitive functions and numerical sensing & control tasks in intelligent systems. The book not only serves as a valuable reference source for researchers and professionals in the fields of computer vision and robotics, but will also benefit practitioners and graduates/postgraduates seeking advanced information on fuzzy techniques and their applications in motion analysis.
备用文件名
lgli/K:\!genesis\!repository9\spr\10.1007%2F978-3-662-53692-6.pdf
备用文件名
lgrsnf/K:\!genesis\!repository9\spr\10.1007%2F978-3-662-53692-6.pdf
备用文件名
nexusstc/Human Motion Sensing and Recognition: A Fuzzy Qualitative Approach/579ca7246c0a25061b57223647cab249.pdf
备用文件名
scihub/10.1007/978-3-662-53692-6.pdf
备用文件名
zlib/Computers/Honghai Liu, Zhaojie Ju, Xiaofei Ji, Chee Seng Chan, Mehdi Khoury (auth.)/Human Motion Sensing and Recognition: A Fuzzy Qualitative Approach_2943046.pdf
备选标题
Hand Motion Recognition and Transfer: A Unified Framework for Human Hand Manipulation Recognition and Its Application
备选标题
309157_Print.indd
备选作者
Honghai Liu, (Professor of Intelligent Systems); Zhaojie Ju; Xiaofei Ji; Chee Seng Chan; Mehdi Khoury
备选作者
Liu, Honghai, Ju, Zhaojie, Ji, Xiaofei, Chan, Chee Seng, Khoury, Mehdi
备选作者
0009172
备用出版商
Springer Berlin Heidelberg : Imprint: Springer
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
Springer Nature
备用版本
Studies in computational intelligence, volume 675, Berlin, Germany, 2017
备用版本
Studies in Computational Intelligence, 675, Berlin, Heidelberg, 2017
备用版本
Springer Nature, Berlin, Heidelberg, 2017
备用版本
1st ed. 2017, 2017
备用版本
Germany, Germany
备用版本
2, 20170511
元数据中的注释
sm64676808
元数据中的注释
producers:
Acrobat Distiller 10.0.0 (Windows)
Acrobat Distiller 10.0.0 (Windows)
元数据中的注释
{"container_title":"Studies in Computational Intelligence","content":{"parsed_at":1698285731,"source_extension":"epub"},"edition":"1","isbns":["3662536900","3662536927","9783662536902","9783662536926"],"issns":["1860-949X","1860-9503"],"publisher":"Springer","series":"Studies in Computational Intelligence 675"}
备用描述
Preface 6
Contents 9
Acronyms 14
1 Introduction 16
1.1 Human Motion Sensing Techniques 16
1.1.1 Vision-Based Sensing 17
1.1.2 Wearable Sensing 22
1.1.3 Multimodal Sensing 29
1.2 Recognition Approaches 30
1.2.1 Probabilistic Graphical Models 30
1.2.2 Support Vector Machines 32
1.2.3 Artificial Neural Networks and Deep Learning 33
1.2.4 Fuzzy Approaches 35
1.3 Challenges and Motivation 41
References 42
2 Fuzzy Qualitative Trigonometry 50
2.1 Introduction 50
2.2 Fuzzy Qualitative Trigonometry 52
2.3 Fuzzy Qualitative Trigonometric Functions 56
2.4 Derivatives of Fuzzy Qualitative Trigonometry 58
2.5 Conclusion 62
References 63
3 Fuzzy Qualitative Robot Kinematics 66
3.1 Introduction 66
3.2 Fuzzy Qualitative Robot Kinematics 67
3.2.1 Fuzzy Qualitative Transformations 67
3.2.2 Fuzzy Qualitative Robot Kinematics 70
3.3 Quantity Vector Aggregation 71
3.4 Case Study 74
3.5 Conclusion 79
References 80
4 Fuzzy Qualitative Human Motion Analysis 81
4.1 Introduction 81
4.2 FQ Human Motion Analysis 84
4.2.1 Human Body Modelling 84
4.2.2 Human Motion Tracking 85
4.2.3 Data Quantisation 87
4.2.4 Human Motion Representation 91
4.3 Experiments 95
4.3.1 Datasets and Preprocessing 95
4.3.2 Results and Analysis 98
4.3.3 Quantitative Comparison 102
4.3.4 Complexity Analysis 103
4.4 Conclusion 105
References 105
5 Fuzzy Gaussian Mixture Models 108
5.1 Introduction 108
5.2 Generalised GMMs 109
5.2.1 Conventional GMMs 110
5.2.2 Generalized Gaussian Models 111
5.2.3 EM Algorithm for Generalized GMMs 114
5.3 Fuzzy Gaussian Mixture Models 115
5.3.1 Fuzzy C-Means Clustering 116
5.3.2 Probability Based FGMMs 117
5.3.3 Distance Based FGMMs 118
5.3.4 Comparison of Probability/Distance Based FGMMs 119
5.4 Experiments 120
5.4.1 Gaussian Based Datasets 121
5.4.2 Structure Analysis of Characters 126
5.4.3 Evaluation on UCI Datasets 128
5.5 Conclusion 131
References 132
6 Fuzzy Empirical Copula for Estimating Data Dependence Structure 135
6.1 Introduction 135
6.2 Dependence Structure Estimation via Empirical Copula 137
6.2.1 Copula 138
6.2.2 Empirical Copula and Dependence Estimation 138
6.3 Fuzzy Empirical Copula 140
6.3.1 Initialisation 140
6.3.2 Approximation 141
6.3.3 Assignment 142
6.4 Experiment and Discussions 144
6.4.1 Data 144
6.4.2 Dependence Structure Estimation via Empirical Copula 146
6.4.3 Dependence Structure Estimation via Fuzzy Empirical Copula 146
6.4.4 Comparison of FLAME+ and K-Means in Fuzzy Empirical Copula 151
6.5 Conclusion 154
References 155
7 A Unified Fuzzy Framework for Human Hand Motion Recognition 158
7.1 Introduction 158
7.2 Time Clustering Recognition 160
7.2.1 Motion Model Construction 161
7.2.2 Motion Recognition 162
7.3 Fuzzy Gaussian Mixture Models Recognition 163
7.4 Recognizing with Fuzzy Empirical Copula 164
7.4.1 Re-sampling 164
7.4.2 One-to-One Correlation and Motion Template 164
7.4.3 Motion Recognition 166
7.5 Experiments 167
7.5.1 Experiment Set-Up 167
7.5.2 Experiment 1---Training with One Sample from a Single Subject 168
7.5.3 Experiment 2---Training with Six Samples from Multiple Subjects 172
7.5.4 Experiment 3---Training with Various Samples from a Single Subject 173
7.5.5 Experiment 4---Training with Various Samples from Multiple Subjects 177
7.6 Conclusion 178
References 179
8 Human Hand Motion Analysis with Multisensory Information 182
8.1 Introduction 182
8.2 Multiple-Sensor Hand Motion Capture System 185
8.2.1 System Configuration 185
8.2.2 Synchronization 186
8.2.3 Segmentation 187
8.2.4 Data Capturing 188
8.3 Correlations of Finger Trajectories, Contact Forces and EMG Signals 190
8.4 Motion Recognition via EMG Intention 192
8.4.1 Training Models via FGMMs 193
8.4.2 Recognition 194
8.4.3 Experimental Results 196
8.5 Conclusion 199
References 199
9 A Novel Approach to Extract Hand Gesture Feature in Depth Images 203
9.1 Introduction 203
9.2 Image Segmentation and De-noising Combining with Depth Information 205
9.2.1 Image Segmentation 205
9.2.2 Select the Edge Contour of Image 206
9.2.3 De-noise by Contour Length Information 206
9.3 Extract Fingertip Feature by Lasso 208
9.3.1 Earth Mover's Distance 208
9.3.2 Lasso Algorithm 210
9.4 Conclusion 213
References 214
10 Recognizing Constrained 3D Human Motion: An Inference Approach 216
10.1 Introduction 216
10.2 Human Skeletal Representation 218
10.3 The 3D Motion Recognition Framework 219
10.3.1 Fuzzy Quantile Generation 220
10.3.2 The Context-Aware Filter 225
10.3.3 Dealing with Occluded Motion 227
10.4 Experiments and Results 231
10.4.1 Experimental Setup 231
10.4.2 Evaluating Fuzzy Quantile Generation 233
10.4.3 Evaluating Occlusion Module 235
10.5 Conclusion 238
References 239
11 Study of Human Action Recognition Based on Improved Spatio-Temporal Features 242
11.1 Introduction 242
11.2 Interest Points Detection 244
11.3 Action Representation 246
11.3.1 3D SIFT Descriptor 246
11.3.2 Positional Distribution Information of Interest Points 247
11.3.3 Motion Features 248
11.4 SVM Algorithm and Results Analysis 249
11.4.1 Recognition Algorithm 249
11.4.2 Dataset 250
11.4.3 Testing Results in Portion Scenario 251
11.4.4 Testing Results in Mixed Scenarios 252
11.5 AdaBoost-SVM Algorithm and Results Analysis 255
11.5.1 AdaBoost Algorithm 255
11.5.2 Experimental Results 256
11.6 Conclusion 258
References 258
12 A View-Invariant Action Recognition Based on Multi-view Space Hidden Markov Models 260
12.1 Introduction 260
12.2 Framework of the Proposed Method 262
12.3 Feature Extraction 264
12.3.1 Interest Point Feature Extraction 264
12.3.2 Optical Flow Feature Extraction 265
12.3.3 Mixed Feature 266
12.4 Action Recognition 267
12.4.1 Sub-view Space HMM Building 267
12.4.2 Multi-view Space HMMs Probability Fusion 268
12.5 Experiments 269
12.6 Conclusion 274
References 275
Appendix A Arithmetic Operations of Chap. 2 277
Appendix B Algorithm of Chap. 4 278
Appendix C Algorithm and Proof of Chap. 5 279
Appendix D Algorithms of Chap. 6 281
Appendix E Algorithms of Chap. 9 283
Index 285
Contents 9
Acronyms 14
1 Introduction 16
1.1 Human Motion Sensing Techniques 16
1.1.1 Vision-Based Sensing 17
1.1.2 Wearable Sensing 22
1.1.3 Multimodal Sensing 29
1.2 Recognition Approaches 30
1.2.1 Probabilistic Graphical Models 30
1.2.2 Support Vector Machines 32
1.2.3 Artificial Neural Networks and Deep Learning 33
1.2.4 Fuzzy Approaches 35
1.3 Challenges and Motivation 41
References 42
2 Fuzzy Qualitative Trigonometry 50
2.1 Introduction 50
2.2 Fuzzy Qualitative Trigonometry 52
2.3 Fuzzy Qualitative Trigonometric Functions 56
2.4 Derivatives of Fuzzy Qualitative Trigonometry 58
2.5 Conclusion 62
References 63
3 Fuzzy Qualitative Robot Kinematics 66
3.1 Introduction 66
3.2 Fuzzy Qualitative Robot Kinematics 67
3.2.1 Fuzzy Qualitative Transformations 67
3.2.2 Fuzzy Qualitative Robot Kinematics 70
3.3 Quantity Vector Aggregation 71
3.4 Case Study 74
3.5 Conclusion 79
References 80
4 Fuzzy Qualitative Human Motion Analysis 81
4.1 Introduction 81
4.2 FQ Human Motion Analysis 84
4.2.1 Human Body Modelling 84
4.2.2 Human Motion Tracking 85
4.2.3 Data Quantisation 87
4.2.4 Human Motion Representation 91
4.3 Experiments 95
4.3.1 Datasets and Preprocessing 95
4.3.2 Results and Analysis 98
4.3.3 Quantitative Comparison 102
4.3.4 Complexity Analysis 103
4.4 Conclusion 105
References 105
5 Fuzzy Gaussian Mixture Models 108
5.1 Introduction 108
5.2 Generalised GMMs 109
5.2.1 Conventional GMMs 110
5.2.2 Generalized Gaussian Models 111
5.2.3 EM Algorithm for Generalized GMMs 114
5.3 Fuzzy Gaussian Mixture Models 115
5.3.1 Fuzzy C-Means Clustering 116
5.3.2 Probability Based FGMMs 117
5.3.3 Distance Based FGMMs 118
5.3.4 Comparison of Probability/Distance Based FGMMs 119
5.4 Experiments 120
5.4.1 Gaussian Based Datasets 121
5.4.2 Structure Analysis of Characters 126
5.4.3 Evaluation on UCI Datasets 128
5.5 Conclusion 131
References 132
6 Fuzzy Empirical Copula for Estimating Data Dependence Structure 135
6.1 Introduction 135
6.2 Dependence Structure Estimation via Empirical Copula 137
6.2.1 Copula 138
6.2.2 Empirical Copula and Dependence Estimation 138
6.3 Fuzzy Empirical Copula 140
6.3.1 Initialisation 140
6.3.2 Approximation 141
6.3.3 Assignment 142
6.4 Experiment and Discussions 144
6.4.1 Data 144
6.4.2 Dependence Structure Estimation via Empirical Copula 146
6.4.3 Dependence Structure Estimation via Fuzzy Empirical Copula 146
6.4.4 Comparison of FLAME+ and K-Means in Fuzzy Empirical Copula 151
6.5 Conclusion 154
References 155
7 A Unified Fuzzy Framework for Human Hand Motion Recognition 158
7.1 Introduction 158
7.2 Time Clustering Recognition 160
7.2.1 Motion Model Construction 161
7.2.2 Motion Recognition 162
7.3 Fuzzy Gaussian Mixture Models Recognition 163
7.4 Recognizing with Fuzzy Empirical Copula 164
7.4.1 Re-sampling 164
7.4.2 One-to-One Correlation and Motion Template 164
7.4.3 Motion Recognition 166
7.5 Experiments 167
7.5.1 Experiment Set-Up 167
7.5.2 Experiment 1---Training with One Sample from a Single Subject 168
7.5.3 Experiment 2---Training with Six Samples from Multiple Subjects 172
7.5.4 Experiment 3---Training with Various Samples from a Single Subject 173
7.5.5 Experiment 4---Training with Various Samples from Multiple Subjects 177
7.6 Conclusion 178
References 179
8 Human Hand Motion Analysis with Multisensory Information 182
8.1 Introduction 182
8.2 Multiple-Sensor Hand Motion Capture System 185
8.2.1 System Configuration 185
8.2.2 Synchronization 186
8.2.3 Segmentation 187
8.2.4 Data Capturing 188
8.3 Correlations of Finger Trajectories, Contact Forces and EMG Signals 190
8.4 Motion Recognition via EMG Intention 192
8.4.1 Training Models via FGMMs 193
8.4.2 Recognition 194
8.4.3 Experimental Results 196
8.5 Conclusion 199
References 199
9 A Novel Approach to Extract Hand Gesture Feature in Depth Images 203
9.1 Introduction 203
9.2 Image Segmentation and De-noising Combining with Depth Information 205
9.2.1 Image Segmentation 205
9.2.2 Select the Edge Contour of Image 206
9.2.3 De-noise by Contour Length Information 206
9.3 Extract Fingertip Feature by Lasso 208
9.3.1 Earth Mover's Distance 208
9.3.2 Lasso Algorithm 210
9.4 Conclusion 213
References 214
10 Recognizing Constrained 3D Human Motion: An Inference Approach 216
10.1 Introduction 216
10.2 Human Skeletal Representation 218
10.3 The 3D Motion Recognition Framework 219
10.3.1 Fuzzy Quantile Generation 220
10.3.2 The Context-Aware Filter 225
10.3.3 Dealing with Occluded Motion 227
10.4 Experiments and Results 231
10.4.1 Experimental Setup 231
10.4.2 Evaluating Fuzzy Quantile Generation 233
10.4.3 Evaluating Occlusion Module 235
10.5 Conclusion 238
References 239
11 Study of Human Action Recognition Based on Improved Spatio-Temporal Features 242
11.1 Introduction 242
11.2 Interest Points Detection 244
11.3 Action Representation 246
11.3.1 3D SIFT Descriptor 246
11.3.2 Positional Distribution Information of Interest Points 247
11.3.3 Motion Features 248
11.4 SVM Algorithm and Results Analysis 249
11.4.1 Recognition Algorithm 249
11.4.2 Dataset 250
11.4.3 Testing Results in Portion Scenario 251
11.4.4 Testing Results in Mixed Scenarios 252
11.5 AdaBoost-SVM Algorithm and Results Analysis 255
11.5.1 AdaBoost Algorithm 255
11.5.2 Experimental Results 256
11.6 Conclusion 258
References 258
12 A View-Invariant Action Recognition Based on Multi-view Space Hidden Markov Models 260
12.1 Introduction 260
12.2 Framework of the Proposed Method 262
12.3 Feature Extraction 264
12.3.1 Interest Point Feature Extraction 264
12.3.2 Optical Flow Feature Extraction 265
12.3.3 Mixed Feature 266
12.4 Action Recognition 267
12.4.1 Sub-view Space HMM Building 267
12.4.2 Multi-view Space HMMs Probability Fusion 268
12.5 Experiments 269
12.6 Conclusion 274
References 275
Appendix A Arithmetic Operations of Chap. 2 277
Appendix B Algorithm of Chap. 4 278
Appendix C Algorithm and Proof of Chap. 5 279
Appendix D Algorithms of Chap. 6 281
Appendix E Algorithms of Chap. 9 283
Index 285
备用描述
Front Matter....Pages i-xvi
Introduction....Pages 1-34
Fuzzy Qualitative Trigonometry....Pages 35-50
Fuzzy Qualitative Robot Kinematics....Pages 51-65
Fuzzy Qualitative Human Motion Analysis....Pages 67-93
Fuzzy Gaussian Mixture Models....Pages 95-121
Fuzzy Empirical Copula for Estimating Data Dependence Structure....Pages 123-145
A Unified Fuzzy Framework for Human Hand Motion Recognition....Pages 147-170
Human Hand Motion Analysis with Multisensory Information....Pages 171-191
A Novel Approach to Extract Hand Gesture Feature in Depth Images....Pages 193-205
Recognizing Constrained 3D Human Motion: An Inference Approach....Pages 207-232
Study of Human Action Recognition Based on Improved Spatio-Temporal Features....Pages 233-250
A View-Invariant Action Recognition Based on Multi-view Space Hidden Markov Models....Pages 251-267
Back Matter....Pages 269-281
Introduction....Pages 1-34
Fuzzy Qualitative Trigonometry....Pages 35-50
Fuzzy Qualitative Robot Kinematics....Pages 51-65
Fuzzy Qualitative Human Motion Analysis....Pages 67-93
Fuzzy Gaussian Mixture Models....Pages 95-121
Fuzzy Empirical Copula for Estimating Data Dependence Structure....Pages 123-145
A Unified Fuzzy Framework for Human Hand Motion Recognition....Pages 147-170
Human Hand Motion Analysis with Multisensory Information....Pages 171-191
A Novel Approach to Extract Hand Gesture Feature in Depth Images....Pages 193-205
Recognizing Constrained 3D Human Motion: An Inference Approach....Pages 207-232
Study of Human Action Recognition Based on Improved Spatio-Temporal Features....Pages 233-250
A View-Invariant Action Recognition Based on Multi-view Space Hidden Markov Models....Pages 251-267
Back Matter....Pages 269-281
备用描述
These techniques are shown to effectively address the above challenges by bridging the gap between symbolic cognitive functions and numerical sensing & control tasks in intelligent systems. The book not only serves as a valuable reference source for researchers and professionals in the fields of computer vision and robotics, but will also benefit practitioners and graduates/postgraduates seeking advanced information on fuzzy techniques and their applications in motion analysis.
Erscheinungsdatum: 18.05.2017
Erscheinungsdatum: 18.05.2017
开源日期
2017-06-25
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
- 高速服务器(合作方提供) #1 (推荐)
- 高速服务器(合作方提供) #2 (推荐)
- 高速服务器(合作方提供) #3 (推荐)
- 高速服务器(合作方提供) #4 (推荐)
- 高速服务器(合作方提供) #5 (推荐)
- 高速服务器(合作方提供) #6 (推荐)
- 高速服务器(合作方提供) #7
- 高速服务器(合作方提供) #8
- 高速服务器(合作方提供) #9
- 高速服务器(合作方提供) #10
- 高速服务器(合作方提供) #11
- 高速服务器(合作方提供) #12
- 高速服务器(合作方提供) #13
- 高速服务器(合作方提供) #14
- 高速服务器(合作方提供) #15
- 高速服务器(合作方提供) #16
- 高速服务器(合作方提供) #17
- 高速服务器(合作方提供) #18
- 高速服务器(合作方提供) #19
- 高速服务器(合作方提供) #20
- 高速服务器(合作方提供) #21
- 高速服务器(合作方提供) #22
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #10 (稍快但需要排队)
- 低速服务器(合作方提供) #11 (稍快但需要排队)
- 低速服务器(合作方提供) #12 (稍快但需要排队)
- 低速服务器(合作方提供) #13 (稍快但需要排队)
- 低速服务器(合作方提供) #14 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #15 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #16 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #17 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #18 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.