Heegner Modules and Elliptic Curves 🔍
Martin L. Brown Springer Berlin Heidelberg : Imprint : Springer, Lecture Notes in Mathematics, Lecture Notes in Mathematics, 1, 2004
英语 [en] · RAR · 4.4MB · 2004 · 📘 非小说类图书 · 🚀/duxiu/lgli/lgrs/nexusstc/scihub/zlib · Save
描述
Heegner Points On Both Modular Curves And Elliptic Curves Over Global Fields Of Any Characteristic Form The Topic Of This Research Monograph. The Heegner Module Of An Elliptic Curve Is An Original Concept Introduced In This Text. The Computation Of The Cohomology Of The Heegner Module Is The Main Technical Result And Is Applied To Prove The Tate Conjecture For A Class Of Elliptic Surfaces Over Finite Fields; This Conjecture Is Equivalent To The Birch And Swinnerton-dyer Conjecture For The Corresponding Elliptic Curves Over Global Fields. Preface -- Introduction -- Preliminaries -- Bruhat-tits Trees With Complex Multiplication -- Heegner Sheaves -- The Heegner Module -- Cohomology Of The Heegner Module -- Finiteness Of The Tate-shafarevich Groups -- Appendix A.: Rigid Analytic Modular Forms -- Appendix B.: Automorphic Forms And Elliptic Curves Over Function Fields -- References -- Index. M.l. Brown. Includes Bibliographical References (p. [507]-510) And Index.
备用文件名
lgrsnf/dvd53/Brown M. L. - Heegner Modules and Elliptic Curves(2004)(517).rar
备用文件名
nexusstc/Heegner Modules and Elliptic Curves/54f123c5562a95215ac17cde623aa2da.rar
备用文件名
scihub/10.1007/b98488.pdf
备用文件名
zlib/Mathematics/Martin L. Brown/Heegner Modules and Elliptic Curves_493510.rar
备选作者
Brown, M. L. (martin L.)
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
Springer London, Limited
备用出版商
Springer Nature
备用版本
Lecture notes in mathematics (Springer-Verlag), 1849, Berlin ; New York, ©2004
备用版本
Lecture Notes in Mathematics, Berlin, Heidelberg, 2004
备用版本
Lecture notes in mathematics <Berlin>, Berlin, 2004
备用版本
1 edition, August 26, 2004
备用版本
Germany, Germany
备用版本
1, 20040830
备用版本
2004, 2007
元数据中的注释
mexmat -- 53
元数据中的注释
lg61301
元数据中的注释
{"container_title":"Lecture Notes in Mathematics","edition":"1","isbns":["2004107464","3540222901","3540444750","9782004107466","9783540222903","9783540444756"],"issns":["0075-8434","1617-9692"],"last_page":517,"publisher":"Springer","series":"Lecture Notes in Mathematics"}
元数据中的注释
Lecture Notes in Mathematics
备用描述
Heegner points on both modular curves and elliptic curves over global fields of any characteristic is the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields, this conjecture being equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields. TOC:Preface.- 1. Introduction.- 2. Preliminaries.- 3. Bruhat-Tits trees with complex multiplication.- 4. Heegner sheaves.- 5. The Heegner module.- 6. Cohomology of the Heegner module.- 7. Finiteness of the Tate-Shafarevich groups.- Appendix A. Rigid analytic modular forms.- Appendix B. Automorphic forms and elliptic curves over function fields.- References.- Index
备用描述
The points of departure of this text are twofold: first the proof by Drinfeld in 1974 ([Drl], see also Appendix B) of an important case of the Langlands conjecture for GL2 over a global field of positive characteristic and second the proof by Kolyvagin [K] in 1989 of the Birch Swinnerton-Dyer conjecture for a class of Weil elliptic curves over the rational field Q.
备用描述
Lecture Notes in Mathematics
Erscheinungsdatum: 15.07.2004
开源日期
2009-07-20
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。