Generalized Linear Mixed Models: Modern Concepts, Methods and Applications (Chapman & Hall/CRC Texts in Statistical Science) 🔍
Stroup, Walter W. CRC Press, an imprint of Taylor and Francis, Chapman and Hall/CRC Texts in Statistical Science Ser, 1st ed, Bosa Roca, 2012
英语 [en] · PDF · 3.5MB · 2012 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to LinearRead more... Abstract: PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data
备用文件名
lgrsnf/N:\!genesis_files_for_add\_add\kolxo3\93\M_Mathematics\MV_Probability\MVsa_Statistics and applications\Stroup W.W. Generalized linear mixed models.. modern concepts, methods and applications (CRC, 2012)(ISBN 9781439815137)(O)(547s)_MVsa_.pdf
备用文件名
lgli/M_Mathematics/MV_Probability/MVsa_Statistics and applications/Stroup W.W. Generalized linear mixed models.. modern concepts, methods and applications (CRC, 2012)(ISBN 9781439815137)(O)(547s)_MVsa_.pdf
备用文件名
nexusstc/Generalized linear mixed models: modern concepts, methods and applications/53cb83701bdc1ffcfbbea75522f700ee.pdf
备用文件名
zlib/Science (General)/Stroup, Walter W/Generalized linear mixed models: modern concepts, methods and applications_6029873.pdf
备选作者
Walter W. Stroup
备用出版商
CRC Press, Taylor & Francis Group
备用出版商
CRC Press LLC
备用版本
Texts in statistical science, First edition, Boca Raton, FL, 2012
备用版本
Texts in statistical science, Boca Raton, 2013
备用版本
United States, United States of America
备用版本
CRC Press LLC, Boca Raton, 2013
备用版本
1, 2016
元数据中的注释
kolxo3 -- 93
元数据中的注释
lg2804332
元数据中的注释
{"edition":"1","isbns":["1439815135","9781439815137"],"last_page":547,"publisher":"CRC Press","series":"Chapman & Hall/CRC Texts in Statistical Science"}
备用描述
PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing "Data Architecture" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data Scale vs. Model ScaleIssue II: Inference SpaceIssue III: Conditional and Marginal ModelsSummaryPART II Estimation and Inference EssentialsEstimationIntroductionEssential BackgroundFixed Effects OnlyGaussian Mixed ModelsGeneralized Linear Mixed ModelsSummaryInference, Part I: Model EffectsIntroductionEssential BackgroundApproaches to TestingInference Using Model-Based StatisticsInference Using Empirical Standard ErrorSummary of Main Ideas and General Guidelines for ImplementationInference, Part II: Covariance ComponentsIntroductionFormal Testing of Covariance ComponentsFit Statistics to Compare Covariance ModelsInterval EstimationSummaryPART III Working with GLMMsTreatment and Explanatory Variable StructureTypes of Treatment StructuresTypes of Estimable FunctionsMultiple Factor Models: OverviewMultifactor Models with All Factors QualitativeMultifactor: Some Factors Qualitative, Some Factors QuantitativeMultifactor: All Factors QuantitativeSummaryMultilevel ModelsTypes of Design Structure: Single- and Multilevel Models DefinedTypes of Multilevel Models and How They AriseRole of Blocking in Multilevel ModelsWorking with Multilevel DesignsMarginal and Conditional Multilevel ModelsSummaryBest Linear Unbiased PredictionReview of Estimable and Predictable
备用描述
"Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider. Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random. With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling"-- Provided by publisher
备用描述
Front Cover......Page 1
Generalized Linear Mixed Models: Modern Concepts, Methods and Applications......Page 6
Copyright......Page 7
Table of Contents......Page 8
Preface......Page 16
Acknowledgments......Page 26
Part I: The Big Picture......Page 28
1. Modeling Basics......Page 30
2. Design Matters......Page 52
3. Setting the Stage......Page 92
Part II: Estimation and Inference Essentials......Page 146
4. Estimation......Page 148
5. Inference, Part I: Model Effects......Page 176
6. Inference, Part II: Covariance Components......Page 206
Part III: Working with GLMMs......Page 228
7. Treatment and Explanatory Variable Structure......Page 230
8. Multilevel Models......Page 266
9. Best Linear Unbiased Prediction......Page 298
10. Rates and Proportions......Page 326
11. Counts......Page 362
12. Time-to-Event Data......Page 402
13. Multinomial Data......Page 424
14. Correlated Errors, Part I: Repeated Measures......Page 440
15. Correlated Errors, Part II: Spatial Variability......Page 470
16. Power, Sample Size, and Planning......Page 494
Appendices: Essential Matrix Operations and Results......Page 526
Appendix A: Matrix Operations......Page 528
Appendix B: Distribution Theory for Matrices......Page 536
References......Page 540
Back Cover......Page 547
备用描述
With numerous examples using SAS PROC GLIMMIX, this text presents an introduction to linear modeling using the generalized linear mixed model as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.
开源日期
2020-10-11
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。