Photonic crystals : towards nanoscale photonic devices 🔍
Jean-Michel Lourtioz, Henri Benisty, Vincent Berger, Jean-Michel Gerard, Daniel Maystre, Alexei Tchelnokov, J.-M Lourtioz
Springer-Verlag Berlin Heidelberg, 1 edition, December 31, 1999
英语 [en] · PDF · 24.9MB · 1999 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends to provide students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building bridges between optics, electromagnetism and solid-state physics. This book was written by six specialists of nanophotonics, and was coordinated by Jean-Michel Lourtioz, head of the Institut d'?lectronique Fondamentale in Orsay and coordinator of the French Research Network in Nanophotonics.
备用文件名
nexusstc/Photonic Crystals: Towards Nanoscale Photonic Devices/4f969fa5ec0644a963c80def76f2375e.pdf
备用文件名
zlib/Engineering/Jean-Michel Lourtioz, Henri Benisty, Vincent Berger, Jean-Michel Gerard, Daniel Maystre, Alexei Tche/Photonic Crystals: Towards Nanoscale Photonic Devices_1014109.pdf
备选作者
Lourtioz, Jean-Michel, Benisty, Henri, Berger, Vincent, Gerard, Jean-Michel, Maystre, Daniel, Tchelnokov, Alexei
备选作者
Dominique Pagnoux, Jean-Michel Lourtioz, Pierre de Fornel, Henri Benisty, Vincent Berger, Jean-Michel Gerard
备选作者
Jean-Michel Lourtioz; Henri Benisty; Vincent Berger; Jean-Michel Gérard; Daniel Maystre; Alexis Tchelnokov
备选作者
J.-M. Lourtioz ... [et al.]; translated by Pierre-Noel Favennec
备选作者
Jean-Michel Louritioz (Universite Paris Sud); Henr
备选作者
Jean-M Lourtioz; Pierre-Noel Favennec
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
Springer Verlag GmbH & Co. KG
备用出版商
Springer London, Limited
备用版本
Berlin ; New York, ©2005
备用版本
Berlin, Heidelberg, 2005
备用版本
Berlin, Germany, 2005
备用版本
Berlin, cop. 2005
备用版本
Germany, Germany
备用版本
2nd, PS, 2005
备用版本
1, 2006
元数据中的注释
до 2011-01
元数据中的注释
lg589915
元数据中的注释
producers:
Adobe Acrobat 7.08 Paper Capture Plug-in
Adobe Acrobat 7.08 Paper Capture Plug-in
元数据中的注释
{"edition":"1","isbns":["354024431X","3540277013","9783540244318","9783540277019"],"last_page":430,"publisher":"Springer"}
元数据中的注释
Includes bibliographical references.
备用描述
Table of Contents......Page 13
Foreword......Page 5
Part I. Theoretical Models for Photonic Crystals......Page 19
Introduction to Part 1......Page 20
1.1 Plane Wave Expansion......Page 22
1.3 Photonic Band Diagram......Page 38
1.4 Infinite Crystals with Defects......Page 60
2.1 Transfer, Reflection and Transmission Matrix Formulations......Page 79
2.2 Finite Difference in Time Domain (FDTD) Method......Page 94
2.3 Scattering Matrix Method......Page 105
2.4 Other Methods: Integral and Differential Methods, Finite Element Method, Effective Medium Theory......Page 114
2.5 Numerical Codes available for the Modelling of Photonic Crystals......Page 118
3 Quasi-Crystals and Archimedean Tilings......Page 120
3.1 Photonic Quasi-Crystals......Page 121
3.2 Archimedean Tilings......Page 125
3.3 From Photonic Quasi-Crystals to the Localisation of Light......Page 128
4.1 Bulk Metals: Drude Model, Skin Effect and Metallic Losses......Page 133
4.2 Periodic Metallic Structures at Low Frequencies......Page 138
4.3 Periodic Metallic Structures at Optical Frequencies. Idealised Case of a Dispersive Lossless Dielectric......Page 146
4.4 Surface Waves......Page 149
Part II. Optical Properties of Photonic Crystals......Page 168
Introduction to Part II. The Many 'Facets' of Photonic Crystals......Page 169
5.1 The Photonic Crystal Mirror......Page 172
5.2 Photonic Crystal Waveguides......Page 177
5.3 Resonators......Page 193
5.4 Hybrid Structures with Index Guiding. The Light Line......Page 197
6.1 Phase Refractive index, Group Refractive Index and Energy Propagation......Page 204
6.2 Refraction of Waves at the Interface between a Periodic Medium and a Homogeneous Medium......Page 210
6.3 Superprism and Ultra-Refraction Effects......Page 213
6.4 Metamaterials......Page 215
7 Confinement of Light in Zero-Dimensional Microcavities......Page 221
7.1 Microcavity Sources. Principles and Effects......Page 222
7.2 Three-Dimensional Optical Confinement in Zero-Dimensional Microcavities......Page 240
8 Frequency Conversion......Page 253
8.1 The Problem of Phase-Matching......Page 254
8.2 χ[sup((1))] Photonic Crystals......Page 256
8.3 χ[sup((2))] Photonic Crystals......Page 264
Part III. Fabrication, Characterisation and Applications of Photonic Band Gap Structure......Page 270
Introduction to Part III......Page 271
9.1 Objectives, New Devices and Challenges......Page 272
9.2 Fundamentals of Integrated Optics and Introduction of Photonic Crystals......Page 275
9.3 Buried Waveguides......Page 285
9.4 Membrane Waveguide Photonic Crystals......Page 290
9.5 Macroporous Silicon Photonic Substrates......Page 293
9.6 Characterisation Methods for Photonic Crystals in Integrated Optics......Page 296
9.7 Losses of Photonic Crystal Integrated Optical Devices......Page 302
9.8 Some Noteworthy Devices and Functions......Page 308
10.1 High-Efficiency Light-Emitting Diodes......Page 312
10.2 Ridge-Type Waveguide Lasers Confined by Photonics Crystals......Page 318
10.3 Photonic Crystal Band Edge Lasers......Page 320
10.4 Microcavity Lasers......Page 323
10.5 Potential Interest for Single Photon Sources......Page 327
11.1 Another Implementation of Periodic Structures......Page 331
11.2 Fabrication of Photonic Crystal Fibres......Page 332
11.3 Solid-Core Microstructured Optical Fibres......Page 334
11.4 True Photonic Crystal Fibres......Page 339
12 Three-Dimensional Structures in Optics......Page 345
12.1 Geometrical Configurations proposed for Three-Dimensional Structures......Page 346
12.2 Examples of Fabrication Processes and Realisations of Three-Dimensional Photonic Crystals in the Optical Region......Page 351
12.3 Metallic Three-Dimensional Photonic Crystals in the Optical Region......Page 362
12.4 Three-Dimensional Photonic Crystals and Light Emitters......Page 363
13 Microwave and Terahertz Antennas and Circuits......Page 365
13.1 Photonic Crystal Antennas......Page 366
13.2 Controllable Structures and Metamaterials......Page 376
13.3 Microwave Circuits and Ultra-Compact Photonic Crystals......Page 382
13.4 From Microwaves to Terahertz Waves......Page 387
13.5 From Microwaves to Optics......Page 388
Conclusion and Perspectives......Page 393
A.2 Field inside the Rods......Page 396
A.3 Field in the Vicinity of a Rod......Page 399
References......Page 405
Foreword......Page 5
Part I. Theoretical Models for Photonic Crystals......Page 19
Introduction to Part 1......Page 20
1.1 Plane Wave Expansion......Page 22
1.3 Photonic Band Diagram......Page 38
1.4 Infinite Crystals with Defects......Page 60
2.1 Transfer, Reflection and Transmission Matrix Formulations......Page 79
2.2 Finite Difference in Time Domain (FDTD) Method......Page 94
2.3 Scattering Matrix Method......Page 105
2.4 Other Methods: Integral and Differential Methods, Finite Element Method, Effective Medium Theory......Page 114
2.5 Numerical Codes available for the Modelling of Photonic Crystals......Page 118
3 Quasi-Crystals and Archimedean Tilings......Page 120
3.1 Photonic Quasi-Crystals......Page 121
3.2 Archimedean Tilings......Page 125
3.3 From Photonic Quasi-Crystals to the Localisation of Light......Page 128
4.1 Bulk Metals: Drude Model, Skin Effect and Metallic Losses......Page 133
4.2 Periodic Metallic Structures at Low Frequencies......Page 138
4.3 Periodic Metallic Structures at Optical Frequencies. Idealised Case of a Dispersive Lossless Dielectric......Page 146
4.4 Surface Waves......Page 149
Part II. Optical Properties of Photonic Crystals......Page 168
Introduction to Part II. The Many 'Facets' of Photonic Crystals......Page 169
5.1 The Photonic Crystal Mirror......Page 172
5.2 Photonic Crystal Waveguides......Page 177
5.3 Resonators......Page 193
5.4 Hybrid Structures with Index Guiding. The Light Line......Page 197
6.1 Phase Refractive index, Group Refractive Index and Energy Propagation......Page 204
6.2 Refraction of Waves at the Interface between a Periodic Medium and a Homogeneous Medium......Page 210
6.3 Superprism and Ultra-Refraction Effects......Page 213
6.4 Metamaterials......Page 215
7 Confinement of Light in Zero-Dimensional Microcavities......Page 221
7.1 Microcavity Sources. Principles and Effects......Page 222
7.2 Three-Dimensional Optical Confinement in Zero-Dimensional Microcavities......Page 240
8 Frequency Conversion......Page 253
8.1 The Problem of Phase-Matching......Page 254
8.2 χ[sup((1))] Photonic Crystals......Page 256
8.3 χ[sup((2))] Photonic Crystals......Page 264
Part III. Fabrication, Characterisation and Applications of Photonic Band Gap Structure......Page 270
Introduction to Part III......Page 271
9.1 Objectives, New Devices and Challenges......Page 272
9.2 Fundamentals of Integrated Optics and Introduction of Photonic Crystals......Page 275
9.3 Buried Waveguides......Page 285
9.4 Membrane Waveguide Photonic Crystals......Page 290
9.5 Macroporous Silicon Photonic Substrates......Page 293
9.6 Characterisation Methods for Photonic Crystals in Integrated Optics......Page 296
9.7 Losses of Photonic Crystal Integrated Optical Devices......Page 302
9.8 Some Noteworthy Devices and Functions......Page 308
10.1 High-Efficiency Light-Emitting Diodes......Page 312
10.2 Ridge-Type Waveguide Lasers Confined by Photonics Crystals......Page 318
10.3 Photonic Crystal Band Edge Lasers......Page 320
10.4 Microcavity Lasers......Page 323
10.5 Potential Interest for Single Photon Sources......Page 327
11.1 Another Implementation of Periodic Structures......Page 331
11.2 Fabrication of Photonic Crystal Fibres......Page 332
11.3 Solid-Core Microstructured Optical Fibres......Page 334
11.4 True Photonic Crystal Fibres......Page 339
12 Three-Dimensional Structures in Optics......Page 345
12.1 Geometrical Configurations proposed for Three-Dimensional Structures......Page 346
12.2 Examples of Fabrication Processes and Realisations of Three-Dimensional Photonic Crystals in the Optical Region......Page 351
12.3 Metallic Three-Dimensional Photonic Crystals in the Optical Region......Page 362
12.4 Three-Dimensional Photonic Crystals and Light Emitters......Page 363
13 Microwave and Terahertz Antennas and Circuits......Page 365
13.1 Photonic Crystal Antennas......Page 366
13.2 Controllable Structures and Metamaterials......Page 376
13.3 Microwave Circuits and Ultra-Compact Photonic Crystals......Page 382
13.4 From Microwaves to Terahertz Waves......Page 387
13.5 From Microwaves to Optics......Page 388
Conclusion and Perspectives......Page 393
A.2 Field inside the Rods......Page 396
A.3 Field in the Vicinity of a Rod......Page 399
References......Page 405
备用描述
Springer
Table of Contents 13
Foreword 5
Part I. Theoretical Models for Photonic Crystals 19
Introduction to Part 1 20
1 Models for InHnite Crystals 22
1.1 Plane Wave Expansion 22
1.2 Other Methods for the Calculation of the Photonic Band Gaps of an Infinite Crystal: the KKR Method 38
1.3 Photonic Band Diagram 38
1.4 Infinite Crystals with Defects 60
2 Models for Finite Crystals 79
2.1 Transfer, Reflection and Transmission Matrix Formulations 79
2.2 Finite Difference in Time Domain (FDTD) Method 94
2.3 Scattering Matrix Method 105
2.4 Other Methods: Integral and Differential Methods, Finite Element Method, Effective Medium Theory 114
2.5 Numerical Codes available for the Modelling of Photonic Crystals 118
3 Quasi-Crystals and Archimedean Tilings 120
3.1 Photonic Quasi-Crystals 121
3.2 Archimedean Tilings 125
3.3 From Photonic Quasi-Crystals to the Localisation of Light 128
4 Specific Features of Metallic Structures 133
4.1 Bulk Metals: Drude Model, Skin Effect and Metallic Losses 133
4.2 Periodic Metallic Structures at Low Frequencies 138
4.3 Periodic Metallic Structures at Optical Frequencies. Idealised Case of a Dispersive Lossless Dielectric 146
4.4 Surface Waves 149
Part II. Optical Properties of Photonic Crystals 168
Introduction to Part II. The Many 'Facets' of Photonic Crystals 169
5 Control of Electromagnetic Waves 172
5.1 The Photonic Crystal Mirror 172
5.2 Photonic Crystal Waveguides 177
5.3 Resonators 193
5.4 Hybrid Structures with Index Guiding. The Light Line 197
6 Refractive Properties 204
6.1 Phase Refractive index, Group Refractive Index and Energy Propagation 204
6.2 Refraction of Waves at the Interface between a Periodic Medium and a Homogeneous Medium 210
6.3 Superprism and Ultra-Refraction Effects 213
6.4 Metamaterials 215
7 Confinement of Light in Zero-Dimensional Microcavities 221
7.1 Microcavity Sources. Principles and Effects 222
7.2 Three-Dimensional Optical Confinement in Zero-Dimensional Microcavities 240
8 Frequency Conversion 253
8.1 The Problem of Phase-Matching 254
8.2 χ[sup((1))] Photonic Crystals 256
8.3 χ[sup((2))] Photonic Crystals 264
Part III. Fabrication, Characterisation and Applications of Photonic Band Gap Structure 270
Introduction to Part III 271
9 Planar Integrated Optics 272
9.1 Objectives, New Devices and Challenges 272
9.2 Fundamentals of Integrated Optics and Introduction of Photonic Crystals 275
9.3 Buried Waveguides 285
9.4 Membrane Waveguide Photonic Crystals 290
9.5 Macroporous Silicon Photonic Substrates 293
9.6 Characterisation Methods for Photonic Crystals in Integrated Optics 296
9.7 Losses of Photonic Crystal Integrated Optical Devices 302
9.8 Some Noteworthy Devices and Functions 308
10 Microsources 312
10.1 High-Efficiency Light-Emitting Diodes 312
10.2 Ridge-Type Waveguide Lasers Confined by Photonics Crystals 318
10.3 Photonic Crystal Band Edge Lasers 320
10.4 Microcavity Lasers 323
10.5 Potential Interest for Single Photon Sources 327
11 Photonic Crystal Fibres 331
11.1 Another Implementation of Periodic Structures 331
11.2 Fabrication of Photonic Crystal Fibres 332
11.3 Solid-Core Microstructured Optical Fibres 334
11.4 True Photonic Crystal Fibres 339
12 Three-Dimensional Structures in Optics 345
12.1 Geometrical Configurations proposed for Three-Dimensional Structures 346
12.2 Examples of Fabrication Processes and Realisations of Three-Dimensional Photonic Crystals in the Optical Region 351
12.3 Metallic Three-Dimensional Photonic Crystals in the Optical Region 362
12.4 Three-Dimensional Photonic Crystals and Light Emitters 363
13 Microwave and Terahertz Antennas and Circuits 365
13.1 Photonic Crystal Antennas 366
13.2 Controllable Structures and Metamaterials 376
13.3 Microwave Circuits and Ultra-Compact Photonic Crystals 382
13.4 From Microwaves to Terahertz Waves 387
13.5 From Microwaves to Optics 388
Conclusion and Perspectives 393
Appendix. Scattering Matrix Method: Determination of the Field for a Finite Two-Dimensional Crystal formed by Dielectric Rods 396
A.1 Incident Field 396
A.2 Field inside the Rods 396
A.3 Field in the Vicinity of a Rod 399
References 405
354024431X,9783540244318,9783540277019
Table of Contents 13
Foreword 5
Part I. Theoretical Models for Photonic Crystals 19
Introduction to Part 1 20
1 Models for InHnite Crystals 22
1.1 Plane Wave Expansion 22
1.2 Other Methods for the Calculation of the Photonic Band Gaps of an Infinite Crystal: the KKR Method 38
1.3 Photonic Band Diagram 38
1.4 Infinite Crystals with Defects 60
2 Models for Finite Crystals 79
2.1 Transfer, Reflection and Transmission Matrix Formulations 79
2.2 Finite Difference in Time Domain (FDTD) Method 94
2.3 Scattering Matrix Method 105
2.4 Other Methods: Integral and Differential Methods, Finite Element Method, Effective Medium Theory 114
2.5 Numerical Codes available for the Modelling of Photonic Crystals 118
3 Quasi-Crystals and Archimedean Tilings 120
3.1 Photonic Quasi-Crystals 121
3.2 Archimedean Tilings 125
3.3 From Photonic Quasi-Crystals to the Localisation of Light 128
4 Specific Features of Metallic Structures 133
4.1 Bulk Metals: Drude Model, Skin Effect and Metallic Losses 133
4.2 Periodic Metallic Structures at Low Frequencies 138
4.3 Periodic Metallic Structures at Optical Frequencies. Idealised Case of a Dispersive Lossless Dielectric 146
4.4 Surface Waves 149
Part II. Optical Properties of Photonic Crystals 168
Introduction to Part II. The Many 'Facets' of Photonic Crystals 169
5 Control of Electromagnetic Waves 172
5.1 The Photonic Crystal Mirror 172
5.2 Photonic Crystal Waveguides 177
5.3 Resonators 193
5.4 Hybrid Structures with Index Guiding. The Light Line 197
6 Refractive Properties 204
6.1 Phase Refractive index, Group Refractive Index and Energy Propagation 204
6.2 Refraction of Waves at the Interface between a Periodic Medium and a Homogeneous Medium 210
6.3 Superprism and Ultra-Refraction Effects 213
6.4 Metamaterials 215
7 Confinement of Light in Zero-Dimensional Microcavities 221
7.1 Microcavity Sources. Principles and Effects 222
7.2 Three-Dimensional Optical Confinement in Zero-Dimensional Microcavities 240
8 Frequency Conversion 253
8.1 The Problem of Phase-Matching 254
8.2 χ[sup((1))] Photonic Crystals 256
8.3 χ[sup((2))] Photonic Crystals 264
Part III. Fabrication, Characterisation and Applications of Photonic Band Gap Structure 270
Introduction to Part III 271
9 Planar Integrated Optics 272
9.1 Objectives, New Devices and Challenges 272
9.2 Fundamentals of Integrated Optics and Introduction of Photonic Crystals 275
9.3 Buried Waveguides 285
9.4 Membrane Waveguide Photonic Crystals 290
9.5 Macroporous Silicon Photonic Substrates 293
9.6 Characterisation Methods for Photonic Crystals in Integrated Optics 296
9.7 Losses of Photonic Crystal Integrated Optical Devices 302
9.8 Some Noteworthy Devices and Functions 308
10 Microsources 312
10.1 High-Efficiency Light-Emitting Diodes 312
10.2 Ridge-Type Waveguide Lasers Confined by Photonics Crystals 318
10.3 Photonic Crystal Band Edge Lasers 320
10.4 Microcavity Lasers 323
10.5 Potential Interest for Single Photon Sources 327
11 Photonic Crystal Fibres 331
11.1 Another Implementation of Periodic Structures 331
11.2 Fabrication of Photonic Crystal Fibres 332
11.3 Solid-Core Microstructured Optical Fibres 334
11.4 True Photonic Crystal Fibres 339
12 Three-Dimensional Structures in Optics 345
12.1 Geometrical Configurations proposed for Three-Dimensional Structures 346
12.2 Examples of Fabrication Processes and Realisations of Three-Dimensional Photonic Crystals in the Optical Region 351
12.3 Metallic Three-Dimensional Photonic Crystals in the Optical Region 362
12.4 Three-Dimensional Photonic Crystals and Light Emitters 363
13 Microwave and Terahertz Antennas and Circuits 365
13.1 Photonic Crystal Antennas 366
13.2 Controllable Structures and Metamaterials 376
13.3 Microwave Circuits and Ultra-Compact Photonic Crystals 382
13.4 From Microwaves to Terahertz Waves 387
13.5 From Microwaves to Optics 388
Conclusion and Perspectives 393
Appendix. Scattering Matrix Method: Determination of the Field for a Finite Two-Dimensional Crystal formed by Dielectric Rods 396
A.1 Incident Field 396
A.2 Field inside the Rods 396
A.3 Field in the Vicinity of a Rod 399
References 405
354024431X,9783540244318,9783540277019
备用描述
Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires.Photonic Crystals intends to provide students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building bridges between optics, electromagnetism and solid-state physics.This book was written by six specialists of nanophotonics, and was coordinated by Jean-Michel Lourtioz, head of the Institut d'A0/00lectronique Fondamentale in Orsay and coordinator of the French Research Network in Nanophotonics.
备用描述
Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends to provide students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building bridges between optics, electromagnetism and solid-state physics. This book was written by six specialists of nanophotonics, and was coordinated by Jean-Michel Lourtioz, head of the Institut d'Électronique Fondamentale in Orsay and coordinator of the French Research Network in Nanophotonics.
备用描述
"Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building bridges between optics, electromagnetism and solid-state physics."--Résumé de l'éditeur
备用描述
"Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building bridges between optics, electromagnetism and solid-state physics."--BOOK JACKET
备用描述
J.-m. Lourtioz ... [et Al.] ; Translated By Pierre-noel Favennec. Includes Bibliographical References.
开源日期
2011-06-04
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.