Доказательства из Книги: лучшие доказательства со времен Евклида до наших дней: [16+] 🔍
Мартин Айгнер, Гюнтер Циглер Бином. Лаборатория знаний, 4, 2021
俄语 [ru] · PDF · 8.5MB · 2021 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
В книге собраны красивые и глубокие теоремы из различных областей теории чисел, геометрии, анализа, комбинаторики, теории графов. Доказательства этих теорем используют неожиданные сочетания разнородных идей. Изложение материала сопровождается большим числом иллюстраций.
Книга предназначена всем, кто увлечен математикой: в первую очередь студентам, аспирантам, а также преподавателям, научным работникам и просто любителям изящных математических рассуждений. Многое в книге доступно школьникам старших классов.
备用文件名
lgli/Доказательства из Книги лучшие доказательства со времен Евклида до наших дней (2021).pdf
备用文件名
lgrsnf/Доказательства из Книги лучшие доказательства со времен Евклида до наших дней (2021).pdf
备用文件名
zlib/Mathematics/Мартин Айгнер, Гюнтер Циглер/Доказательства из Книги. Лучшие доказательства со времен Евклида до наших дней_11070921.pdf
备选标题
Dokazatelʹstva iz Knigi. Luchshie dokazatelʹstva so vremen evklida do nashikh dneĭ
备选作者
М. Айгнер, Г. Циглер; пер. 4-го англ. изд. Б. И. Селиванова; под ред. А. М. Зубкова; с ил. Карла Г. Хофмана
备选作者
Айгнер, Мартин
备选作者
Martin Aigner
备选作者
M Aĭgner
备用出版商
Agentstvo elektronnykh izdanii «Intermediator»
备用出版商
BINOM. LABORATORIYa ZNANII
备用出版商
Binom Laboratorija Znanij
备用版本
2-e izdanie, dopolnennoe, Moskva, 2015
备用版本
2-е изд. доп., Москва, Russia, 2015
备用版本
Russia, Russian Federation
备用版本
Moskva, 2017
元数据中的注释
Vector PDF
元数据中的注释
lg2892189
元数据中的注释
{"edition":"4","isbns":["5932085118","5996306298","9785932085110","9785996306299"],"last_page":291,"publisher":"Лаборатория знаний"}
元数据中的注释
Фактическая дата выхода в свет - 2014
Указ.
Библиогр. в конце гл.
Пер.: Aigner, Martin Proofs from the book
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 007578474
=005 20141121135642.0
=008 141106s2015\\\\ru\\\\\\\\\\\\000\|\rus\d
=017 \\ $a 14-83356 $b RuMoRKP
=020 \\ $a 978-5-9963-0629-9
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=084 \\ $a В12,0 $2 rubbk
=100 1\ $a Айгнер, Мартин $d 1942-
=245 00 $a Доказательства из Книги $h [Текст] : $b лучшие доказательства со времен Евклида до наших дней : [16+] $c М. Айгнер, Г. Циглер ; пер. 4-го англ. изд. Б. И. Селиванова ; под ред. А. М. Зубкова ; с ил. Карла Г. Хофмана
=250 \\ $a 2-е изд. доп.
=260 \\ $a Москва $b Бином. Лаборатория знаний $c 2015
=300 \\ $a 288 с. $b ил., портр. $c 27 см
=336 \\ $a текст (text) $b txt $2 rdacontent
=337 \\ $a неопосредованный (unmediated) $b n $2 rdamedia
=338 \\ $a том (volume) $b nc $2 rdacarrier
=500 \\ $a Фактическая дата выхода в свет - 2014
=500 \\ $a Указ.
=504 \\ $a Библиогр. в конце гл.
=534 \\ $p Пер.: $a Aigner, Martin $t Proofs from the book
=650 \7 $a Физико-математические науки -- Математика -- Основания математики. Математическая логика $2 rubbk
=650 \7 $a Теоремы $x Доказательство $0 RU\NLR\AUTH\661087513 $2 nlr_sh
=700 1\ $a Циглер, Гюнтер М. $d 1963-
=852 \\ $a РГБ $b FB $j 2 14-84/20 $x 90
=852 \\ $a РГБ $b FB $j 2 14-84/21 $x 90
备用描述
Оглавление
Предисловие редактора перевода
Предисловие
Предисловие к четвертому изданию
Предисловие ко второму русскому изданию
Теория чисел
Глава 1. Шесть доказательств бесконечности множества простых чисел
Глава 2. Постулат Бертрана
Глава 3. Биномиальные коэффициенты (почти) никогда не являются степенями
Глава 4. Представления чисел в виде сумм двух квадратов
Глава 5. Закон взаимности квадратичных вычетов
Глава 6. Каждое конечное кольцо с делением — поле
Глава 7. Некоторые иррациональные числа
Глава 8. Три раза о π2/6
Геометрия
Глава 9. Третья проблема Гильберта: разбиения многогранников
Глава 10. Прямые на плоскости и разложения графов
Глава 11. Задача о направлениях
Глава 12. Три применения формулы Эйлера
Глава 13. Теорема Коши о жесткости
Глава 14. Касание симплексов
Глава 15. Каждое большое точечное множество имеет тупой угол
Глава 16. Гипотеза Борсука
Математический анализ
Глава 17. Множества, функции и гипотеза континуума
Глава 18. Во славу неравенств
Глава 19. Основная теорема алгебры
Глава 20. Один квадрат и нечетное число треугольников
Глава 21. Теорема Пойа о многочленах
Глава 22. О лемме Литтлвуда и Оффорда
Глава 23. Котангенс и прием Герглотца
Глава 24. Задача Бюффона об игле
Комбинаторика
Глава 25. Принцип Дирихле и двойной счет
Глава 26. Плиточные разбиения прямоугольников
Глава 27. Три знаменитых теоремы о конечных множествах
Глава 28. Тасование карт
Глава 29. Пути на решетке и определители
Глава 30. Формула Кэли для числа деревьев
Глава 31. Тождества и биекции
Глава 32. Дополнения до полных латинских квадратов
Теория графов
Глава 33. Задача Диница
Глава 34. Задача о пяти красках для плоских графов
Глава 35. Как охранять музей
Глава 36. Теорема Турана о графах
Глава 37. Связь без ошибок
Глава 38. Хроматическое число графов Кнезера
Глава 39. О друзьях и политиках
Глава 40. Вероятность (иногда) упрощает перечисление
Об иллюстрациях
Предметный указатель
开源日期
2020-12-25
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。