物质点法 : 适于极端工况的粒子类方法 : 英文版 : a continuum-based particle method for extreme loading cases 🔍
张雄,陈震,刘岩著, 张雄, 陈震, 刘岩著, 张雄, 陈震, 刘岩, 张雄, author 北京:清华大学出版社, 2017, 2017
中文 [zh] · PDF · 40.9MB · 2017 · 📗 未知类型的图书 · 🚀/duxiu/zlibzh · Save
描述
1 (p1): 1.Introduction1 (p1-1): 1.1 Lagrangian Methods3 (p1-2): 1.2 Eulerian Methods4 (p1-3): 1.3 Hybrid Methods4 (p1-3-1): 1.3.1 Arbitrary Eulerian-Lagrangian Method and Its Variations5 (p1-3-2): 1.3.2 Particle-In-Cell Method and Its Variations6 (p1-3-3): 1.3.3 Material Point Method7 (p1-4): 1.4 Meshfree Methods11 (p2): 2.Governing Equations11 (p2-1): 2.1 Description of Motion14 (p2-2): 2.2 Deformation Gradient16 (p2-3): 2.3 Rate of Deformation17 (p2-4): 2.4 Cauchy Stress19 (p2-5): 2.5 Jaumann Stress Rate20 (p2-6): 2.6 Updated Lagrangian Formulation20 (p2-6-1): 2.6.1 Reynolds'Transport Theorem21 (p2-6-2): 2.6.2 Conservation of Mass22 (p2-6-3): 2.6.3 Conservation of Linear Momentum23 (p2-6-4): 2.6.4 Conservation of Energy24 (p2-6-5): 2.6.5 Governing Equations25 (p2-7): 2.7 Weak Form of the Updated Lagrangian Formulation27 (p2-8): 2.8 Shock Wave27 (p2-8-1): 2.8.1 Rankine-Hugoniot Equations29 (p2-8-2): 2.8.2 Artificial Bulk Viscosity32 (p2-9): 2.9 Detonation Wave32 (p2-9-1): 2.9.1 CJ Detonation Model35 (p2-9-2): 2.9.2 ZND Detonation Model37 (p3): 3.The Material Point Method37 (p3-1): 3.1 Material Point Discretization38 (p3-1-1): 3.1.1 Lagrangian Phase41 (p3-1-2): 3.1.2 Convective Phase42 (p3-2): 3.2 Explicit Material Point Method43 (p3-2-1): 3.2.1 Explicit Time Integration47 (p3-2-2): 3.2.2 Explicit MPM Scheme53 (p3-2-3): 3.2.3 Qualitative Demonstration56 (p3-2-4): 3.2.4 Comparison Between MPM and FEM59 (p3-3): 3.3 Contact Method60 (p3-3-1): 3.3.1 Boundary Conditions at Contact Surface62 (p3-3-2): 3.3.2 Contact Detection64 (p3-3-3): 3.3.3 Contact Force67 (p3-3-4): 3.3.4 Numerical Algorithm for Contact Method68 (p3-4): 3.4 Generalized Interpolation MPM and Other Improvements71 (p3-4-1): 3.4.1 Contiguous Particle GIMP72 (p3-4-2): 3.4.2 Uniform GIMP74 (p3-4-3): 3.4.3 Convected Particle Domain Interpolation75 (p3-4-4): 3.4.4 Dual Domain Material Point Method76 (p3-4-5): 3.4.5 Spline Grid Shape Function77 (p3-5): 3.5 Adaptive...
备用文件名
zlibzh/no-category/张雄,陈震,刘岩著, 张雄, 陈震, 刘岩著, 张雄, 陈震, 刘岩, 张雄, author/14423566_30233346.pdf
备选标题
The material point method : a continuum-based particle method for extreme loading cases = 物质点法 : 适于极端工况的粒子类方法
备选标题
14423566
备用出版商
Qinghua University Press
备用版本
Computational mechanics series, Di 1 ban, Beijing, 2017
备用版本
Ji suan li xue cong shu, Di 1 ban, Beijing, 2017
备用版本
China, People's Republic, China
元数据中的注释
Bookmarks: p1 (p1): 1.Introduction
p1-1 (p1): 1.1 Lagrangian Methods
p1-2 (p3): 1.2 Eulerian Methods
p1-3 (p4): 1.3 Hybrid Methods
p1-3-1 (p4): 1.3.1 Arbitrary Eulerian-Lagrangian Method and Its Variations
p1-3-2 (p5): 1.3.2 Particle-In-Cell Method and Its Variations
p1-3-3 (p6): 1.3.3 Material Point Method
p1-4 (p7): 1.4 Meshfree Methods
p2 (p11): 2.Governing Equations
p2-1 (p11): 2.1 Description of Motion
p2-2 (p14): 2.2 Deformation Gradient
p2-3 (p16): 2.3 Rate of Deformation
p2-4 (p17): 2.4 Cauchy Stress
p2-5 (p19): 2.5 Jaumann Stress Rate
p2-6 (p20): 2.6 Updated Lagrangian Formulation
p2-6-1 (p20): 2.6.1 Reynolds'Transport Theorem
p2-6-2 (p21): 2.6.2 Conservation of Mass
p2-6-3 (p22): 2.6.3 Conservation of Linear Momentum
p2-6-4 (p23): 2.6.4 Conservation of Energy
p2-6-5 (p24): 2.6.5 Governing Equations
p2-7 (p25): 2.7 Weak Form of the Updated Lagrangian Formulation
p2-8 (p27): 2.8 Shock Wave
p2-8-1 (p27): 2.8.1 Rankine-Hugoniot Equations
p2-8-2 (p29): 2.8.2 Artificial Bulk Viscosity
p2-9 (p32): 2.9 Detonation Wave
p2-9-1 (p32): 2.9.1 CJ Detonation Model
p2-9-2 (p35): 2.9.2 ZND Detonation Model
p3 (p37): 3.The Material Point Method
p3-1 (p37): 3.1 Material Point Discretization
p3-1-1 (p38): 3.1.1 Lagrangian Phase
p3-1-2 (p41): 3.1.2 Convective Phase
p3-2 (p42): 3.2 Explicit Material Point Method
p3-2-1 (p43): 3.2.1 Explicit Time Integration
p3-2-2 (p47): 3.2.2 Explicit MPM Scheme
p3-2-3 (p53): 3.2.3 Qualitative Demonstration
p3-2-4 (p56): 3.2.4 Comparison Between MPM and FEM
p3-3 (p59): 3.3 Contact Method
p3-3-1 (p60): 3.3.1 Boundary Conditions at Contact Surface
p3-3-2 (p62): 3.3.2 Contact Detection
p3-3-3 (p64): 3.3.3 Contact Force
p3-3-4 (p67): 3.3.4 Numerical Algorithm for Contact Method
p3-4 (p68): 3.4 Generalized Interpolation MPM and Other Improvements
p3-4-1 (p71): 3.4.1 Contiguous Particle GIMP
p3-4-2 (p72): 3.4.2 Uniform GIMP
p3-4-3 (p74): 3.4.3 Convected Particle Domain Interpolation
p3-4-4 (p75): 3.4.4 Dual Domain Material Point Method
p3-4-5 (p76): 3.4.5 Spline Grid Shape Function
p3-5 (p77): 3.5 Adaptive Material Point Method
p3-5-1 (p77): 3.5.1 Particle Adaptive Split
p3-5-2 (p79): 3.5.2 Adaptive Computational Grid
p3-6 (p87): 3.6 Non-reflecting Boundary
p3-7 (p88): 3.7 Incompressible Material Point Method
p3-7-1 (p89): 3.7.1 Momentum Equation of Fluid
p3-7-2 (p89): 3.7.2 Operator Splitting
p3-7-3 (p90): 3.7.3 Pressure Poisson Equations
p3-7-4 (p91): 3.7.4 Pressure Boundary Conditions
p3-7-5 (p92): 3.7.5 Velocity Update
p3-8 (p93): 3.8 Implicit Material Point Method
p3-8-1 (p95): 3.8.1 Implicit Time Integration
p3-8-2 (p95): 3.8.2 Solution of a System of Nonlinear Equations
p3-8-3 (p97): 3.8.3 The Jacobian of Grid NodalInternal Force
p3-8-4 (p99): 3.8.4 Solution of a Linearized System of Equations
p4 (p104): 4.Computer Implementation of the MPM
p4-1 (p104): 4.1 Execution of the MPM3D-F90
p4-2 (p105): 4.2 Input Data File Format of the MPM3D-F90
p4-2-1 (p105): 4.2.1 Unit
p4-2-2 (p105): 4.2.2 Keywords
p4-2-3 (p106): 4.2.3 Global Information
p4-2-4 (p106): 4.2.4 Material Model
p4-2-5 (p108): 4.2.5 Background Grid
p4-2-6 (p109): 4.2.6 Solution Scheme
p4-2-7 (p109): 4.2.7 Results Output
p4-2-8 (p110): 4.2.8 Bodies
p4-2-9 (p111): 4.2.9 Load
p4-2-10 (p111): 4.2.10 An Example of Input Data File
p4-3 (p113): 4.3 Source Files of the MPM3D-F90
p4-4 (p113): 4.4 Free Format Input
p4-5 (p115): 4.5 MPM Data Encapsulation
p4-5-1 (p115): 4.5.1 Particle Data
p4-5-2 (p116): 4.5.2 Grid Data
p4-5-3 (p119): 4.5.3 Data Input
p4-5-4 (p120): 4.5.4 Data Output
p4-6 (p121): 4.6 Main Subroutines
p4-7 (p137): 4.7 Numerical Examples
p4-7-1 (p137): 4.7.1 TNT Slab Detonation
p4-7-2 (p138): 4.7.2 Taylor Bar Impact
p4-7-3 (p139): 4.7.3 Perforation of a Thick Plate
p4-7-4 (p141): 4.7.4 Failure of Soil Slope
p5 (p143): 5.Coupling of the MPM with FEM
p5-1 (p143): 5.1 Explicit Finite Element Method
p5-1-1 (p143): 5.1.1 Finite Element Discretization
p5-1-2 (p145): 5.1.2 The FEM Formulation in Matrix Form
p5-1-3 (p147): 5.1.3 Hexahedron Element
p5-1-4 (p155): 5.1.4 Numerical Algorithm for an Explicit FEM
p5-2 (p156): 5.2 Hybrid FEM and MPM
p5-3 (p162): 5.3 Coupled FEM and MPM
p5-3-1 (p164): 5.3.1 Global Search
p5-3-2 (p165): 5.3.2 Local Search
p5-3-3 (p166): 5.3.3 Contact Force
p5-4 (p168): 5.4 Adaptive FEMP Method
p5-4-1 (p168): 5.4.1 Discretization Scheme
p5-4-2 (p169): 5.4.2 Convers ion Algorithm
p5-4-3 (p170): 5.4.3 Coupling Between Remaining Elements and Particles
p6 (p175): 6.Constitutive Models
p6-1 (p175): 6.1 Stress Update
p6-2 (p178): 6.2 Strength Models
p6-2-1 (p178): 6.2.1 Elastic Model
p6-2-2 (p179): 6.2.2 Elastoplastic Models
p6-2-3 (p182): 6.2.3 Return Mapping Algorithm
p6-2-4 (p188): 6.2.4 J2 Flow Theory
p6-2-5 (p196): 6.2.5 Pressure-Dependent Elastoplasticity
p6-2-6 (p205): 6.2.6 Newtonian Fluid
p6-2-7 (p205): 6.2.7 High Explosive
p6-3 (p207): 6.3 Equation of State
p6-3-1 (p207): 6.3.1 Polytropic Process
p6-3-2 (p208): 6.3.2 Nearly Incompressible Fluid
p6-3-3 (p209): 6.3.3 Linear Polynomial
p6-3-4 (p210): 6.3.4 JWL
p6-3-5 (p211): 6.3.5 Mie-Grüneisen
p6-4 (p213): 6.4 Failure Models
p6-4-1 (p214): 6.4.1 Effective Plastic Strain Failure Model
p6-4-2 (p214): 6.4.2 Hydrostatic Tensile Failure Model
p6-4-3 (p214): 6.4.3 Maximum Principal/Shear Stress Failure Model
p6-4-4 (p214): 6.4.4 Maximum Principal/Shear Strain Failure Model
p6-4-5 (p215): 6.4.5 Effective Strain Failure Model
p6-5 (p215): 6.5 Computer Implementation of Material Models
p6-5-1 (p215): 6.5.1 Module MaterialData
p6-5-2 (p217): 6.5.2 Module MaterialModel
p7 (p222): 7.Multiscale MPM
p7-1 (p222): 7.1 Governing Equations at Different Scales
p7-2 (p224): 7.2 Solution Scheme for Concurrent Simulations
p7-2-1 (p224): 7.2.1 Preprocessor
p7-2-2 (p224): 7.2.2 Central Processing Unit
p7-3 (p227): 7.3 I nterfacial Treatment
p7-4 (p228): 7.4 Demonstration
p8 (p231): 8.Applications of the MPM
p8-1 (p231): 8.1 Fracture Evolution
p8-2 (p236): 8.2 Impact
p8-3 (p242): 8.3 Explosion
p8-4 (p247): 8.4 Fluid-Structure/Solid Interaction
p8-5 (p251): 8.5 Multiscale Simulation
p8-6 (p259): 8.6 Biomechanics Problems
p8-7 (p261): 8.7 Other Problems with Extreme Deformations
p9 (p265): Bibliography
p10 (p277): Index
元数据中的注释
related_files:
filepath:14423566.zip — md5:e00a815507ef62d57f67e7de616a78cd — filesize:33777238
filepath:14423566.zip — md5:faafea61f24c225cb74f949f45915b72 — filesize:33777238
filepath:/读秀/读秀4.0/读秀/4.0/数据库02-2/14423566.zip
开源日期
2024-06-13
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。