Handbook of nanophase and nanostructured materials. Vol. 4, Materials systems and applications II 🔍
王中林主编 北京:清华大学出版社, New York, New York State, October 1, 2002
英语 [en] · PDF · 3.3MB · 2002 · 📗 未知类型的图书 · 🚀/duxiu/upload · Save
描述
The second part emphasizes the techniques used for characterizing the structure and properties of nanomaterials, aiming at describing the physical mechanism, data interpretation, and detailed applications of the techniques.
备选标题
纳米相和纳米结构材料应用 2 手册 英文版
备选标题
纳米相和纳米结构材料———应用(II)手册
备选作者
edited by Zhong Lin Wang, Yi Liu, and Ze Zhang
备用出版商
Qinghua University Press
备用出版商
Kluwer Academic/Plenum
备用版本
SpringerLINK ebook collection, New York, ©2003
备用版本
China, People's Republic, China
元数据中的注释
Includes bibliographical references and indexes.
元数据中的注释
Bookmarks: p1 (p1): 10 Nanomechanism of the Hexagonal-Cubic Phase Transition in Boron Nitride under High Pressure at High Temperature
p1-2 (p1): 10.1 Introduction
p1-3 (p2): 10.2 Processing Method to Get c-BN
p1-4 (p3): 10.3 Characterization Method
p1-5 (p4): 10.4 Phase Transition of Boron Nitride
p1-6 (p4): 10.4.1 Nanostructure of the Starting Material
p1-7 (p6): 10.4.2 Phases and Nanostructures Appearing during the Hexagonal-Cubic Transition
p1-8 (p16): 10.5 Mechanism of Hexagonal-Cubic Transition
p1-9 (p16): 10.5.1 Model for the Transition Mechanism
p1-10 (p19): 10.5.3 Facilitation of Synthesis of c-BN by Mechanochemical Effect
p1-11 (p19): 10.5.2 Atomic Movement during the Conversion from w-to c-BN
p1-12 (p22): 10.6 Prospect
p1-13 (p22): 10.7 Conclusions
p1-14 (p24): References
p2 (p26): 11 Nanomaterials for Energy Storage:Batteries and Fuel Cells
p2-2 (p26): 11.1 General Overview of Batteries and Fuel Cells
p2-3 (p26): 11.1.1 Introduction
p2-4 (p27): 11.1.2 An Overview of Batteries
p2-5 (p29): 11.1.3 An Overview of Fuel Cells
p2-6 (p33): 11.1.4 Importance of Nanomaterials in Batteries and Fuel Cells
p2-7 (p34): 11.2 Batteries and Nanomaterials
p2-8 (p34): 11.2.1 Classifications of Advanced Batteries
p2-9 (p37): 11.2.2 Major Components of Batteries
p2-10 (p39): 11.2.3 Applications of Nanomaterials in Advanced Batteries
p2-11 (p46): 11.2.4 Most Recent Developments
p2-12 (p46): 11.3 Fuel Cells and Nanomaterials
p2-13 (p46): 11.3.1 Classifications of Fuel Cell Systems
p2-14 (p49): 11.3.2 Major Components and Nanomaterials in Fuel Cells
p2-15 (p50): 11.3.3 Applications of Nanomaterials in Fuel Cells
p2-16 (p60): 11.3.4 Summary
p2-17 (p60): 11.4 Conclusions
p2-18 (p61): References
p2-19 (p69): 12.1 Introduction
p3 (p69): 12 Nanocomposites
p3-2 (p74): 12.2 General Features of Nanocomposites
p3-3 (p74): 12.2.1 Physical Sensitivity:Three Effects of Nanoparticles on Material Properties
p3-4 (p75): 12.2.2 Chemical Reactivity
p3-5 (p76): 12.2.3 Promising Improvements in Nanocomposites
p3-6 (p77): 12.2.4 Origin of Nanophases and Generating Stages
p3-7 (p79): 12.3 Ceramic-Based Nanocomposites
p3-8 (p80): 12.3.1 Strength Improvement of Ceramic-Based Nanocomposites
p3-9 (p84): 12.3.2 Toughening Effect of Nanoceramic Composites
p3-10 (p86): 12.3.3 Improvements of Nanoceramic Composites on Hardness and Wear
p3-11 (p86): 12.3.4 Superplasticity of Ceramic Nanocomposites
p3-12 (p88): 12.3.5 Improvement of Nanoceramic Composites on Creep
p3-13 (p89): 12.4 Metallic-Based Nanocomposites
p3-14 (p89): 12.3.6 Ceramic-Based Nanometallic Composites
p3-15 (p91): 12.5 Polymer-Based Nanocomposites
p3-16 (p93): 12.6 Summaries of Nanocomposites
p3-17 (p94): References
p4 (p96): 13 Growth and Properties of Single-Walled Carbon Nanotubes
p4-2 (p96): 13.1 Introduction
p4-3 (p97): 13.2 Synthetic Strategies for Various Nanotube Architectures
p4-4 (p97): 13.2.1 Chemical Vapor Deposition
p4-5 (p99): 13.2.2 Growth of Self-oriented Multi-Walled Nanotubes
p4-6 (p100): 13.2.3 Enable the Growth of Single-Walled Nanotubes by CVD
p4-7 (p102): 13.2.5 Growth of lsolated Single-Walled Nanotubes on Controlled Surface Sites
p4-8 (p102): 13.2.4 Growth Mechanism of SWNT
p4-9 (p104): 13.2.6 Growth of Suspended SWNTs With Directed Orientations
p4-10 (p106): 13.3 Physics in Atomically Well-Defined Nanowires
p4-11 (p106): 13.3.1 Integrated Circuits of Individual Single-Walled Nanotubes
p4-12 (p107): 13.3.2 Electron Transport Properties of Metallic Nanotubes
p4-13 (p110): 13.3.3 Electron Transport Properties of Semiconducting Nanotubes
p4-14 (p114): 13.3.4 Electron Transport Properties of Semiconducting Nanotubes with Small Band Gaps
p4-15 (p121): 13.4 Integrated Nanotube Devices
p4-16 (p121): 13.4.1 Nanotube Molecular Transistors With High Gains
p4-17 (p123): 13.5 Conclusions
p4-18 (p125): References
p4-19 (p128): 14.2 Theoretical Prediction
p4-20 (p128): 14.1 Introduction
p5 (p128): 14 Nanomaterials from Light-Element Composites
p5-2 (p129): 14.2.1 Empirical Model
p5-3 (p130): 14.2.2 First-Principles Study
p5-4 (p131): 14.3 Synthesis by Chemical Vapor Deposition(CVD)
p5-5 (p132): 14.3.1 Bias-Assisted Hot Filament CVD
p5-6 (p133): 14.3.2 Electron Cyclotron Resonance Microwave Plasma-Assisted CVD(MPCVD)
p5-7 (p134): 14.4 Uniform Size-Controlled Nanocrystalline Diamond Films
p5-8 (p135): 14.4.1 Deposition with CN4/N2 Precursor
p5-9 (p139): 14.4.2 Influence of Additional H2 on Microstructure
p5-10 (p141): 14.4.3 Nitrogen Incorporation
p5-11 (p141): 14.4.4 Surface Stable Growth Model
p5-12 (p142): 14.4.5 Field Electron Emission and Transport Tunneling Mechanism
p5-13 (p144): 14.5 Nanocrystalline Carbon Nitride Films
p5-14 (p145): 14.5.1 αandβStructures
p5-15 (p146): 14.5.2 Tetragonal Structure
p5-16 (p147): 14.5.3 Monoclinic Structure
p5-17 (p147): 14.5.4 Fullerene-like Structure
p5-18 (p148): 14.5.5 Carbon Nitride Diamond Silicon Layers
p5-19 (p149): 14.5.6 Physical and Chemical Properties
p5-20 (p150): 14.6 Nanocrystalline Silicon Carbonitride Films
p5-21 (p151): 14.6.1 Deposition With Nitrogen and Methane
p5-22 (p154): 14.6.2 Deposition with Nitrogen.Methane and Hydrogen:Influence of Hydrogen Flow Ratio
p5-23 (p155): 14.6.3 Lattice-Matched Growth Model
p5-24 (p156): 14.7.1 Morphology and Composition
p5-25 (p156): 14.7 Turbostratic Boron Carbonitride Films
p5-26 (p157): 14.7.2 Turbostratic Structure
p5-27 (p159): 14.7.3 Raman and Photoluminescence
p5-28 (p160): 14.7.4 Field Electron Emission
p5-29 (p161): 14.8 Polymerized Nitrogen-Incorporated Carbon Nanobells
p5-30 (p161): 14.8.1 Polymerized Nanobell Structure
p5-31 (p163): 14.8.2 Chemical Separation and Application
p5-32 (p164): 14.8.3 Wall-Side Field Emission Mechanism
p5-33 (p165): 14.9 Highly Oriented Boron Carbonitride Nanofibers
p5-34 (p165): 14.9.1 Microstructure and Composition
p5-35 (p167): 14.10 Conclusions
p5-36 (p167): 14.9.2 Field Electron Emission
p5-37 (p169): References
p6 (p174): 15 Self-Assembled Ordered Nanostructures
p6-2 (p174): 15.1 Ordered Self-Assembled Nanocrystals
p6-3 (p177): 15.1.1 Processing of Nanocrystals for Self-Assembly
p6-4 (p182): 15.1.2 Technical Aspects of Self-Assembling
p6-5 (p185): 15.1.3 Structure of the Nanocrystal Self-Assembly
p6-6 (p190): 15.1.4 Properties of the Nanocrystal Self-Assembly
p6-7 (p195): 15.2 Ordered Self-Assembly of Mesoporous Materials
p6-8 (p196): 15.2.1 Processing
p6-9 (p197): 15.2.2 The Formation Mechanisms
p6-10 (p199): 15.2.3 Applications
p6-11 (p203): 15.2.4 Mesoporous Materials of Transition Metal Oxides
p6-12 (p205): 15.3 Hierarchically Structured Nanomaterials
p6-13 (p207): 15.4 Summary
p6-14 (p207): References
p7 (p211): 16 Molecularly Organized Nanostructural Materials
p7-2 (p211): 16.1 Introduction
p7-3 (p211): 16.1.1 Nanostructural Materials in Energy Sciences
p7-4 (p212): 16.1.2 Nanophase Materials in Environmental and Health Sciences
p7-5 (p213): 16.1.3 Molecularly Organized Nanostructural Materials
p7-6 (p213): 16.2 Molecularly Directed Nucleation and Growth.and Matrix Mediated Nanocomposites
p7-7 (p213): 16.2.1 Molecularly Directed Nanoscale Materials in Nature
p7-8 (p214): 16.2.2 Directed Nucleation and Growth of Thin Films
p7-9 (p217): 16.2.3 Matrix Mediated Nanocomposites
p7-10 (p221): 16.3 Surfactant Directed Hybrid Nanoscale Materials
p7-11 (p222): 16.3.1 Ordered Nanoporous Materials
p7-12 (p227): 16.3.2 Hybrid Nanoscale Materials
p7-13 (p233): 16.4 Summary and Prospects
p7-14 (p234): References
p8 (p237): 17 Nanostructured Bio-inspired Materials
p8-2 (p237): 17.1 Introduction
p8-3 (p240): 17.2 Case Study Ⅰ:Teeth
p8-4 (p241): 17.2.1 Control over Mineralization at Nanometer Scale
p8-5 (p244): 17.2.2 Hierarchical Structure in Biological Materials
p8-6 (p246): 17.3 Case Study Ⅱ:Mesoscopic Silica Films
p8-7 (p248): 17.3.1 Hierarchical Film Structure
p8-8 (p253): 17.3.2 Towards Control of the Properties
p8-9 (p254): 17.4 Conclusion
p8-10 (p254): References
p9 (p257): 18 Nanophase Metal Oxide Materials for Electrochromic Displays
p9-2 (p257): 18.1 Introduction
p9-3 (p258): 18.2 Basic Concepts in Electrochromism
p9-4 (p258): 18.2.1 Electrochromic Display Device
p9-5 (p260): 18.2.2 Electrochromic Materials
p9-6 (p261): 18.2.3 Perceived Color and Contrast Ratio
p9-7 (p262): 18.2.4 Coloration Efficiency and Response Time
p9-8 (p262): 18.2.5 Write-Erase Efficiency and Cycle Life
p9-9 (p263): 18.3 Nanophase Metal Oxide Electrochromic Materials
p9-10 (p264): 18.3.1 Synthesis of Supported ATO Nanocrystallites
p9-11 (p266): 18.3.2 Characterization of Supported ATO Nanocrystallites
p9-12 (p268): 18.4 Construction of Printed.Flexible Displays Using Interdigitated Electrodes
p9-13 (p268): 18.4.1 Design Strategy
p9-14 (p270): 18.4.2 Materials Selection
p9-15 (p272): 18.4.3 Display Examples
p9-16 (p274): 18.5 Contrast of Printed Electrochromic Displays Using ATO Nanophase Materials
p9-17 (p275): 18.5.1 Effect of Antimony Doping on Contrast Ratio
p9-18 (p281): 18.5.2 Effect of Annealing Temperature on Contrast Ratio
p9-19 (p285): 18.5.3 Other Factors That Affect the Contrast Ratio
p9-20 (p289): References
p9-21 (p289): 18.6 Summary
p10 (p292): 19 Engineered Microstructures for Nonlinear Optics
p10-2 (p292): 19.1 Introduction
p10-3 (p293): 19.2 Preparation of DSLs
p10-4 (p293): 19.2.1 Preparation of DSLs by Modulation of Ferroelectric Domains
p10-5 (p296): 19.2.2 Preparation of DSL by Using Photorefractive Effect
p10-6 (p297): 19.3 Outline of the Nonlinear Optics
p10-7 (p298): 19.4 Wave Vector Conservation
p10-8 (p301): 19.5 Nonlinear Optical Frequency Conversion in 1-D Periodic DSLs
p10-9 (p303): 19.6 Nonlinear Optical Frequency Conversion in 1-D QPDSLs
p10-10 (p304): 19.6.1 The Construction of QPDSL
p10-11 (p305): 19.6.2 Theoretical Treatment of the Nonlinear Optical Processes in QPDSLs
p10-12 (p309): 19.6.3 The Effective Nonlinear Optical Coefficients
p10-13 (p309): 19.6.4 QPM Multiwavelength SHG
p10-14 (p310): 19.6.5 Direct THG
p10-15 (p311): 19.7 Optical Bistability in a 2-D DSL
p10-16 (p312): 19.7.1 Bloch Wave Approach
p10-17 (p315): 19.7.2 Four-Path Switch:Linear Case
p10-18 (p316): 19.7.3 A New Type of Optical Bistability Mechanism:Nonlinear Case with One Incident Wave
p10-19 (p319): 19.7.4 A New Type of Optical Bistability Mechanism:Nonlinear Case With Two Incident Waves
p10-20 (p320): 19.8 Outlook
p10-21 (p322): References
p10-22 (p329): Index
备用描述
10NanomechanismoftheHexagonal-CubicPhaseTransitioninBoronNitrideunderHighPressureatHighTemperature 25页 25
11NanomaterialsforEnergyStorage:BatteriesandFuelCells 51页 51
12Nanocomposites 96页 96
13GrowthandPropertiesofSingle-WalledCarbonNanotubes 125页 125
14NanomaterialsfromLight-ElementComposites 158页 158
15Self-AssembledOrderedNanostructures 206页 206
16MolecularlyOrganizedNanostructuralMaterials 245页 245
17NanostructuredBio-inspiredMaterials 273页 273
18NanophaseMetalOxideMaterialsforElectrochromicDisplays 295页 295
19EngineeredMicrostructuresforNonlinearOptics 331页 331
Index 369页 369
备用描述
v. 1. Synthesis
v. 2. Characterization
v. 3.,pt.1-2. Materials systems and applications I-II.
开源日期
2024-12-16
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。