Arithmetic and Geometry Around Galois Theory Lecture Notes
Progress in Mathematics 🔍
José Bertin (auth.), Pierre Dèbes, Michel Emsalem, Matthieu Romagny, A. Muhammed Uludağ (eds.)
Birkhäuser Basel, Progress in Mathematics, Progress in Mathematics 304, 1, 2013
英语 [en] · PDF · 3.7MB · 2013 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/zlib · Save
描述
This Lecture Notes Volume Is the Fruit Of Two Research-level Summer Schools Jointly Organized By The Gtem Node At Lille University And The Team Of Galatasaray University (istanbul): Geometry And Arithmetic Of Moduli Spaces Of Coverings (2008) And Geometry And Arithmetic Around Galois Theory (2009). The Volume Focuses On Geometric Methods In Galois Theory. The Choice Of The Editors Is To Provide A Complete And Comprehensive Account Of Modern Points Of View On Galois Theory And Related Moduli Problems, Using Stacks, Gerbes And Groupoids. It Contains Lecture Notes On étale Fundamental Group And Fundamental Group Scheme, And Moduli Stacks Of Curves And Covers. Research Articles Complete The Collection. Preface -- J. Bertin: Algebraic Stacks With A View Toward Moduli Stacks Of Covers -- M. Romagny: Models Of Curves -- A. Cadoret: Galois Categories:- M. Emsalem. Fundamental Groupoid Scheme -- N. Borne: Extension Of Galois Groups By Solvable Groups, And Application To Fundamental Groups Of Curves -- M.a. Garuti: On The “galois Closure” For Finite Morphisms -- J.-c. Douai: Hasse Principle And Cohomology Of Groups -- Z. Wojtkowiak: Periods Of Mixed Tate Motives, Examples, L-adic Side -- L. Bary-soroker And E. Paran: On Totally Ramified Extensions Of Discrete Valued Fields -- R.-p. Holzapfel And M. Petkova: An Octahedral Galois-reflection Tower Of Picard Modular Congruence Subgroups. Pierre Dèbes, Michel Emsalem, Matthieu Romagny, A. Muhammed Uludağ, Editors. Includes Bibliographical References.
备用文件名
lgrsnf/A:\compressed\10.1007%2F978-3-0348-0487-5.pdf
备用文件名
nexusstc/Arithmetic and Geometry Around Galois Theory/194d0c6c17deab8af98641893ba675f5.pdf
备用文件名
scihub/10.1007/978-3-0348-0487-5.pdf
备用文件名
zlib/Science (General)/José Bertin (auth.), Pierre Dèbes, Michel Emsalem, Matthieu Romagny, A. Muhammed Uludağ (eds.)/Arithmetic and Geometry Around Galois Theory_2130458.pdf
备选标题
Arithmetic and Geometry Around Galois Theory (Progress in Mathematics Book 304)
备选作者
edited by Pierre Dèbes, Michel Emsalem, Matthieu Romagny, A. Muhammed Uludağ
备选作者
Pierre Dèbes, mathématicien); Michel Emsalem; Matthieu Romagny; et al
备选作者
Pierre D. ebes
备用出版商
Springer Basel; Imprint: Birkhäuser
备用出版商
Springer Nature Switzerland AG
备用出版商
Birkhäuser ; Springer
备用出版商
Birkh User
备用版本
Progress in mathematics (Boston, Mass.), vol. 304, Basel Heidelberg ; New York ; London, cop. 2013
备用版本
Progress in Mathematics -- 304, Basel, Switzerland, 2013
备用版本
Switzerland, Switzerland
备用版本
2013, 2012
元数据中的注释
lg976535
元数据中的注释
{"container_title":"Progress in Mathematics","edition":"1","isbns":["3034804865","3034804873","9783034804868","9783034804875"],"issns":["0743-1643","2296-505X"],"last_page":404,"publisher":"Birkhäuser Basel","series":"Progress in Mathematics 304"}
元数据中的注释
MiU
备用描述
This Lecture Notes volume is the fruit of two research-level summer schools jointly organized by the GTEM node at Lille University and the team of Galatasaray University (Istanbul): "Geometry and Arithmetic of Moduli Spaces of Coverings (2008)" and "Geometry and Arithmetic around Galois Theory (2009)". The volume focuses on geometric methods in Galois theory. The choice of the editors is to provide a complete and comprehensive account of modern points of view on Galois theory and related moduli problems, using stacks, gerbes and groupoids. It contains lecture notes on étale fundamental group and fundamental group scheme, and moduli stacks of curves and covers. Research articles complete the collection.
Erscheinungsdatum: 12.12.2012
Erscheinungsdatum: 12.12.2012
备用描述
Annotation This Lecture Notes volume is the fruit of two research-level summer schools jointly organized by the GTEM node at Lille University and the team of Galatasaray University (Istanbul): 'Geometry and Arithmetic of Moduli Spaces of Coverings (2008)' and 'Geometry and Arithmetic around Galois Theory (2009)'. The volume focuses on geometric methods in Galois theory. The choice of the editors is to provide a complete and comprehensive account of modern points of view on Galois theory and related moduli problems, using stacks, gerbes and groupoids. It contains lecture notes on etale fundamental group and fundamental group scheme, and moduli stacks of curves and covers. Research articles complete the collection.?"
备用描述
Front Matter....Pages i-xi
Algebraic Stacks with a View Toward Moduli Stacks of Covers....Pages 1-148
Models of Curves....Pages 149-170
Galois Categories....Pages 171-246
Fundamental Groupoid Scheme....Pages 247-286
Extension of Galois Groups by Solvable Groups, and Application to Fundamental Groups of Curves....Pages 287-304
On the “Galois Closure” for Finite Morphisms....Pages 305-325
Hasse Principle and Cohomology of Groups....Pages 327-335
Periods of Mixed Tate Motives, Examples, l -adic Side....Pages 337-369
On Totally Ramified Extensions of Discrete Valued Fields....Pages 371-376
An Octahedral Galois-Reflection Tower of Picard Modular Congruence Subgroups....Pages 377-401
Algebraic Stacks with a View Toward Moduli Stacks of Covers....Pages 1-148
Models of Curves....Pages 149-170
Galois Categories....Pages 171-246
Fundamental Groupoid Scheme....Pages 247-286
Extension of Galois Groups by Solvable Groups, and Application to Fundamental Groups of Curves....Pages 287-304
On the “Galois Closure” for Finite Morphisms....Pages 305-325
Hasse Principle and Cohomology of Groups....Pages 327-335
Periods of Mixed Tate Motives, Examples, l -adic Side....Pages 337-369
On Totally Ramified Extensions of Discrete Valued Fields....Pages 371-376
An Octahedral Galois-Reflection Tower of Picard Modular Congruence Subgroups....Pages 377-401
开源日期
2013-08-01
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.