Proceedings of SPIE- The International Society for Optical Engineering Volume 938·Digital and Optical 🔍
Richard D. Juday, chair/editor; sponsored by SPIE--the International Society for Optical Engineering; cooperating organizations, Applied Optics Laboratory/New Mexico State University ... [et al.]
The Society of Photo-Optical Instrumentation Engineers·Washington, Proceedings of SPIE--the International Society for Optical Engineering ;, v. 938, Bellingham, Wash., USA, Washington State, 1988
英语 [en] · PDF · 37.2MB · 1988 · 📗 未知类型的图书 · 🚀/duxiu/ia · Save
描述
Richard D. Juday, Chair/editor ; Sponsored By Spie--the International Society For Optical Engineering ; Cooperating Organizations, Applied Optics Laboratory/new Mexico State University ... [et Al.]. Includes Bibliographies And Index.
备选标题
Digital And Optical Shape Representation And Pattern Recognition/spie 938 (proceedings Of Spie--the International Society For Optical Engineering)
备选标题
Proceedings of SPIE-The International Society for Optical Engineering Volume 938·Digital and Optical Shape Representation and Pattern Recognition
备选标题
Digital and optical shape representation and pattern recognition : 4-6 April 1988, Orlando, Florida
备选作者
Richard D Juday; Society of Photo-optical Instrumentation Engineers.; New Mexico State University. Applied Optics Laboratory
备选作者
Juday, Richard D; Society of Photo-optical Instrumentation Engineers
备用出版商
SPIE-The International Society for Optical Engineering
备用出版商
Bellingham, Wash., USA: SPIE
备用出版商
Society Of Photo Optical
备用版本
Proceedings of SPIE--the International Society for Optical Engineering, v. 938, Bellingham, Wash., USA, c1988
备用版本
United States, United States of America
备用版本
Volume 938, 1988
备用版本
August 1988
元数据中的注释
Cut-off text on some pages due too tight binding.
元数据中的注释
Includes bibliographies and index.
元数据中的注释
contributor: 浙江大学
元数据中的注释
format: Image/Djvu(.djvu)
元数据中的注释
unit_name: 浙江大学
元数据中的注释
Type: 英文图书
元数据中的注释
Bookmarks:
1. (p1) Session 1 Correlator Architectures
1.1. (p2) Operation Of A Deformable Mirror Device As A Fourier Plane Phase Modulating Filter
1.2. (p11) Edge Enhancement Preprocessing Using Liquid Crystal Televisions
1.3. (p15) Optical Laboratory Comparison Of Computer Generated Holograms For Correlation Matched Spatial Filters
1.4. (p29) Optical Correlator Guidance Technology Demonstration
1.5. (p36) Optical Aberrations Of Correlators
1.6. (p40) Two Variants Of The Optical Correlation Process
1.7. (p48) Highly Multiplexed Optical Correlation Filters
1.8. (p52) Massively Parallel Optical Data Base Management
1.9. (p55) A High Dynamic Range Acousto-Optic Image Correlator For Real-Time Pattern Recognition
1.10. (p66) Comparison Of Bipolar Joint Transform Image Correlators And Phase-Only Matched Filter Correlators
2. (p77) Session 2 Digital Stereo
2.1. (p78) 3-D Sensing With Polar Exponential Sensor Arrays
2.2. (p88) Parallel Environment For Structural Analysis Of Range Imagery
2.3. (p96) Determining Vehicle Motion From Stereo Image Sequences Topographic Labs
2.4. (p101) Finding Wheels Of Vehicles In Stereo Images
2.5. (p109) Disparity Coding-An Approach For Stereo Reconstruction
3. (p121) Session 3 Geometric Image Transformations and Applications
3.1. (p122) A Programmable Video Image Remapper
3.2. (p129) Exponential Sensor Array Geometry And Simulation
3.3. (p138) Motion Stereo And Ego-Motion Complex Logarithmic Mapping (Eclm)
3.4. (p146) Geometric Representation Of Visual Data In The Cortex Of Primates:Computer Reconstruction And Modeling Of Neo-Cortical Map And Column Systems
3.5. (p154) Method And Analysis For Obtaining A Dual Representation Of Images
3.6. (p163) Some Examples Of Image Warping For Low Vision Prosthesis
4. (p169) Session 3 (Continued) Topics in Pattern Recognition
4.1. (p170) Hybrid Optical/Electronic Pattern Recognition With Both Coherent And Noncoherent Operations
4.2. (p178) Feature Tracking And Mapping On The Spatiotemporal Surface
5. (p189) Session 4 Filtering Algorithms
5.1. (p190) Correlation Filters For Orientation Estimation
5.2. (p198) Convolution-Controlled Rotation And Scale Invariance In Optical Correlation
5.3. (p206) New Formulations For Discrete-Valued Correlation Filters
5.4. (p212) Optical Processing Of Imaging Spectrometer Data
5.5. (p221) Pattern Recognition With Undersampled Holograms
5.6. (p230) Is The Information Capacity Of Holography Certainly More Than That Of Photography?
5.7. (p238) Dna Sequence Analysis By Optical Pattern Recognition
5.8. (p246) Characterization Of Corneal Specular Endothelial Photomicrographs By Their Fourier Transforms
5.9. (p253) Extension Of Synthetic Estimation Filters For Relative Position Measurements
5.10. (p261) Amplitude Encoded Binary Phase-Only Filters
5.11. (p266) Analysis Of Binarized Hartley Phase-Only Filter Performance With Respect To Stochastic Noise
6. (p281) Session 5 Object Detection and Classification
6.1. (p282) Object Detection Using Region Growing In Laser Range Imagery
6.2. (p289) Feature Extraction For Undersampled Objects In Range Imagery
6.3. (p295) PSRI Target Recognition in Range Imagery Using Neural Networks
6.4. (p302) Hybrid Associative Memories And Metric Data Models
6.5. (p317) Maximum-Likelihood Image Classification
6.6. (p322) Recognition Of Three-Dimensional Objects Using Linear Prediction
6.7. (p330) Clustering With The Relational C-Means Algorithms Using Different Measures Of Pairwise Distance
7. (p339) Session 6 Representation of Shape
7.1. (p340) A morphological Machine
7.2. (p348) AN Integral Measure Signature For Recognition Of Shapes
7.3. (p357) Recognition Of 3d Curves Based On Curvature And Torsion
7.4. (p365) Monte Carlo Estimation Of Moment Invariants For Pattern Recognition
7.5. (p372) Group Direction Difference Chain Codes For The Representation Of The Border
7.6. (p377) Scale-Varying Representations For Object Recognition
7.7. (p384) Morphological Operator Distributions Based On Monotonicity And The Problem Posed By Digital Disk-Shaped Structuring Elements
8. (p393) Session 7 Model-Based Object Recognition
8.1. (p394) Toward Automatic Generation Of Object Recognition Program-Modeling Sensors
8.2. (p408) A Computer Aided Design-Model-Based System For Object Localization
8.3. (p419) A primitive-Based 3d Object Recognition System
8.4. (p428) CAGD Based Computer Vision
8.5. (p436) CAD BASED OBIECT RECOGNITION:INCORPORATING METRIC AND TOPOLOGICAL INFORMATION
8.6. (p444) Model-Based Vision By Cooperative Processing Of Evidence And Hypotheses Using Configuration Spaces
8.7. (p454) Representation Of 3-D Objects Using Nonrigid Connection Of Components
8.8. (p465) Representing Shape Primitives In Neural Networks
1. (p1) Session 1 Correlator Architectures
1.1. (p2) Operation Of A Deformable Mirror Device As A Fourier Plane Phase Modulating Filter
1.2. (p11) Edge Enhancement Preprocessing Using Liquid Crystal Televisions
1.3. (p15) Optical Laboratory Comparison Of Computer Generated Holograms For Correlation Matched Spatial Filters
1.4. (p29) Optical Correlator Guidance Technology Demonstration
1.5. (p36) Optical Aberrations Of Correlators
1.6. (p40) Two Variants Of The Optical Correlation Process
1.7. (p48) Highly Multiplexed Optical Correlation Filters
1.8. (p52) Massively Parallel Optical Data Base Management
1.9. (p55) A High Dynamic Range Acousto-Optic Image Correlator For Real-Time Pattern Recognition
1.10. (p66) Comparison Of Bipolar Joint Transform Image Correlators And Phase-Only Matched Filter Correlators
2. (p77) Session 2 Digital Stereo
2.1. (p78) 3-D Sensing With Polar Exponential Sensor Arrays
2.2. (p88) Parallel Environment For Structural Analysis Of Range Imagery
2.3. (p96) Determining Vehicle Motion From Stereo Image Sequences Topographic Labs
2.4. (p101) Finding Wheels Of Vehicles In Stereo Images
2.5. (p109) Disparity Coding-An Approach For Stereo Reconstruction
3. (p121) Session 3 Geometric Image Transformations and Applications
3.1. (p122) A Programmable Video Image Remapper
3.2. (p129) Exponential Sensor Array Geometry And Simulation
3.3. (p138) Motion Stereo And Ego-Motion Complex Logarithmic Mapping (Eclm)
3.4. (p146) Geometric Representation Of Visual Data In The Cortex Of Primates:Computer Reconstruction And Modeling Of Neo-Cortical Map And Column Systems
3.5. (p154) Method And Analysis For Obtaining A Dual Representation Of Images
3.6. (p163) Some Examples Of Image Warping For Low Vision Prosthesis
4. (p169) Session 3 (Continued) Topics in Pattern Recognition
4.1. (p170) Hybrid Optical/Electronic Pattern Recognition With Both Coherent And Noncoherent Operations
4.2. (p178) Feature Tracking And Mapping On The Spatiotemporal Surface
5. (p189) Session 4 Filtering Algorithms
5.1. (p190) Correlation Filters For Orientation Estimation
5.2. (p198) Convolution-Controlled Rotation And Scale Invariance In Optical Correlation
5.3. (p206) New Formulations For Discrete-Valued Correlation Filters
5.4. (p212) Optical Processing Of Imaging Spectrometer Data
5.5. (p221) Pattern Recognition With Undersampled Holograms
5.6. (p230) Is The Information Capacity Of Holography Certainly More Than That Of Photography?
5.7. (p238) Dna Sequence Analysis By Optical Pattern Recognition
5.8. (p246) Characterization Of Corneal Specular Endothelial Photomicrographs By Their Fourier Transforms
5.9. (p253) Extension Of Synthetic Estimation Filters For Relative Position Measurements
5.10. (p261) Amplitude Encoded Binary Phase-Only Filters
5.11. (p266) Analysis Of Binarized Hartley Phase-Only Filter Performance With Respect To Stochastic Noise
6. (p281) Session 5 Object Detection and Classification
6.1. (p282) Object Detection Using Region Growing In Laser Range Imagery
6.2. (p289) Feature Extraction For Undersampled Objects In Range Imagery
6.3. (p295) PSRI Target Recognition in Range Imagery Using Neural Networks
6.4. (p302) Hybrid Associative Memories And Metric Data Models
6.5. (p317) Maximum-Likelihood Image Classification
6.6. (p322) Recognition Of Three-Dimensional Objects Using Linear Prediction
6.7. (p330) Clustering With The Relational C-Means Algorithms Using Different Measures Of Pairwise Distance
7. (p339) Session 6 Representation of Shape
7.1. (p340) A morphological Machine
7.2. (p348) AN Integral Measure Signature For Recognition Of Shapes
7.3. (p357) Recognition Of 3d Curves Based On Curvature And Torsion
7.4. (p365) Monte Carlo Estimation Of Moment Invariants For Pattern Recognition
7.5. (p372) Group Direction Difference Chain Codes For The Representation Of The Border
7.6. (p377) Scale-Varying Representations For Object Recognition
7.7. (p384) Morphological Operator Distributions Based On Monotonicity And The Problem Posed By Digital Disk-Shaped Structuring Elements
8. (p393) Session 7 Model-Based Object Recognition
8.1. (p394) Toward Automatic Generation Of Object Recognition Program-Modeling Sensors
8.2. (p408) A Computer Aided Design-Model-Based System For Object Localization
8.3. (p419) A primitive-Based 3d Object Recognition System
8.4. (p428) CAGD Based Computer Vision
8.5. (p436) CAD BASED OBIECT RECOGNITION:INCORPORATING METRIC AND TOPOLOGICAL INFORMATION
8.6. (p444) Model-Based Vision By Cooperative Processing Of Evidence And Hypotheses Using Configuration Spaces
8.7. (p454) Representation Of 3-D Objects Using Nonrigid Connection Of Components
8.8. (p465) Representing Shape Primitives In Neural Networks
备用描述
viii, 479 p. : 28 cm
Includes bibliographies and index
Includes bibliographies and index
开源日期
2024-07-01
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.