Элементы численного анализа и математической обработки результатов опыта 🔍
Гутер Р.С., Овчинский Б.В.
Наука, 2, 1970
英语 [en] · 俄语 [ru] · DJVU · 6.8MB · 1970 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
Книга состоит из трех частей.
Первая часть содержит основные методы вычислительной математики: приближенное решение уравнений и систем, простейшие задачи линейной алгебры, параболическую интерполяцию, численное интегрирование и решение дифференциальных уравнений. Вторая часть посвящена теории вероятностей в объеме, предусмотренном общей программой втузов. В третьей части рассматривается теория ошибок наблюдений, интерполяция по способу наименьших квадратов, а также выражение наблюденных данных уравнениями (подбор эмпирических формул). Излагаемый материал сопровождается разбором примеров вычислений и обработки опытных данных. Книга предназначается в качестве учебного пособия для студентов втузов по вычислительной математике и теории вероятностей и может быть использована инженерами, преподавателями специальных кафедр и научными сотрудниками в области технических наук. В книге 66 рисунков, 106 таблиц.
Первая часть содержит основные методы вычислительной математики: приближенное решение уравнений и систем, простейшие задачи линейной алгебры, параболическую интерполяцию, численное интегрирование и решение дифференциальных уравнений. Вторая часть посвящена теории вероятностей в объеме, предусмотренном общей программой втузов. В третьей части рассматривается теория ошибок наблюдений, интерполяция по способу наименьших квадратов, а также выражение наблюденных данных уравнениями (подбор эмпирических формул). Излагаемый материал сопровождается разбором примеров вычислений и обработки опытных данных. Книга предназначается в качестве учебного пособия для студентов втузов по вычислительной математике и теории вероятностей и может быть использована инженерами, преподавателями специальных кафедр и научными сотрудниками в области технических наук. В книге 66 рисунков, 106 таблиц.
备用文件名
lgli/Guter R.S. E'lementy chislennogo analiza i matematicheskoj obrabotki rezul'tatov opyta. (1970).djvu
备选标题
Advances in Intelligent Data Analysis: Third International Symposium, Ida-99, Amsterdam, the Netherlands, August 9-11, 1999: Proceedings (Lecture Notes in Computer Science)
备选作者
IDA-99; International Symposium, IDA-99 Amsterdam
备选作者
David J Hand; Joost N. Kok; Michael R. Berthold
备选作者
Ida-99 (1999 : Amsterdam, Netherlands)
备选作者
Netherlands) Ida-9 (1999 Amsterdam
备选作者
David J. Hand [et al.] (eds.)
备选作者
Hand, David J
备用出版商
Springer Berlin Heidelberg : Imprint: Springer
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
Springer-Verlag Berlin Heidelberg
备用出版商
Springer-Verlag Telos
备用版本
Lecture notes in computer science, 1642, 1st ed. 1999, Berlin, Heidelberg, 1999
备用版本
Springer Nature, Berlin, Heidelberg, 2003
备用版本
Berlin [etc.], Unknown, 1999
备用版本
Germany, Germany
备用版本
August 1999
元数据中的注释
0
元数据中的注释
lg305025
元数据中的注释
Библиогр. в конце докл.
Указ.
Указ.
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 000374336
=003 RuMoRGB
=005 20011030120000.0
=008 010810s1999\\\\xx\uuzm\|\\\\\|\\\\|eng\d
=017 \\ $a И08669-5-01 $b РГБ
=020 \\ $a 3-540-66332-0 (Berlin etc.)
=022 \\ $a 0302-9743
=035 \\ $a (RuMoRGB)CURIK-0043046
=040 \\ $a RuMoRGB $b rus $c RuMoRGB
=041 0\ $a eng
=084 \\ $a З813.4я431(0) $2 rubbk
=084 \\ $a З973.233-013я431(0) $2 rubbk
=245 00 $a Advances in intelligent data analysis $b Third Intern. symp., IDA-99, Amsterdam, The Netherlands, Aug. 9-11, 1999 proc. $c David J. Hand [et al.] (eds.)
=260 \\ $a Berlin [etc.] $b Springer $c Cop. 1999
=300 \\ $a XII, 538 с. $b ил. $c 23 см
=504 \\ $a Библиогр. в конце докл.
=555 \\ $a Указ.
=650 \7 $a Искусственный интеллект -- Интеллектуализация компьютеров -- Материалы конференции $2 rubbk
=650 \7 $a Автоматическая обработка информации -- Преобразование и передача сигналов -- Материалы конференции $2 rubbk
=700 1\ $a Hand, David J. $e ред. $4 edt
=710 2\ $a "Intelligent data analysis", international symposium (3; 1999; Amsterdam)
=720 2\ $a IDA
=720 2\ $a "Intelligent data analysis", international symposium
=720 2\ $a International symposium "Intelligent data analysis"
=720 2\ $a "Intelligent data analysis", international symposium
=720 2\ $a International symposium IDA
=720 2\ $a "Intelligent data analysis", international symposium
=773 18 $7 nnas $g 1642 $t Lecture notes in computer science : LNCS $d Berlin [etc.] : Springer, 1973- $h 24 см $x 0302-9743 $w 000854364
=852 \\ $a РГБ $b FB $j 15 85-3/123-1 $x 90
=001 000374336
=003 RuMoRGB
=005 20011030120000.0
=008 010810s1999\\\\xx\uuzm\|\\\\\|\\\\|eng\d
=017 \\ $a И08669-5-01 $b РГБ
=020 \\ $a 3-540-66332-0 (Berlin etc.)
=022 \\ $a 0302-9743
=035 \\ $a (RuMoRGB)CURIK-0043046
=040 \\ $a RuMoRGB $b rus $c RuMoRGB
=041 0\ $a eng
=084 \\ $a З813.4я431(0) $2 rubbk
=084 \\ $a З973.233-013я431(0) $2 rubbk
=245 00 $a Advances in intelligent data analysis $b Third Intern. symp., IDA-99, Amsterdam, The Netherlands, Aug. 9-11, 1999 proc. $c David J. Hand [et al.] (eds.)
=260 \\ $a Berlin [etc.] $b Springer $c Cop. 1999
=300 \\ $a XII, 538 с. $b ил. $c 23 см
=504 \\ $a Библиогр. в конце докл.
=555 \\ $a Указ.
=650 \7 $a Искусственный интеллект -- Интеллектуализация компьютеров -- Материалы конференции $2 rubbk
=650 \7 $a Автоматическая обработка информации -- Преобразование и передача сигналов -- Материалы конференции $2 rubbk
=700 1\ $a Hand, David J. $e ред. $4 edt
=710 2\ $a "Intelligent data analysis", international symposium (3; 1999; Amsterdam)
=720 2\ $a IDA
=720 2\ $a "Intelligent data analysis", international symposium
=720 2\ $a International symposium "Intelligent data analysis"
=720 2\ $a "Intelligent data analysis", international symposium
=720 2\ $a International symposium IDA
=720 2\ $a "Intelligent data analysis", international symposium
=773 18 $7 nnas $g 1642 $t Lecture notes in computer science : LNCS $d Berlin [etc.] : Springer, 1973- $h 24 см $x 0302-9743 $w 000854364
=852 \\ $a РГБ $b FB $j 15 85-3/123-1 $x 90
备用描述
Formanyyearstheintersectionofcomputing Anddataanalysiscontainedme- Based Statistics Packages And Not Much Else. Recently, Statisticians Have - Braced Computing, Computer Scientists Have Started Using Statistical Theories And Methods, And Researchers In All Corners Have Invented Algorithms To Nd Structure In Vast Online Datasets. Data Analysts Now Have Access To Tools For Exploratory Data Analysis, Decision Tree Induction, Causal Induction, Function - Timation,constructingcustomizedreferencedistributions,andvisualization,and Thereareintelligentassistantsto Adviseonmatters Ofdesignandanalysis.there Aretoolsfortraditional,relativelysmallsamples,andalsoforenormousdatasets. In All, The Scope For Probing Data In New And Penetrating Ways Has Never Been So Exciting. The Ida-99 Conference Brings Together A Wide Variety Of Researchers C- Cerned With Extracting Knowledge From Data, Including People From Statistics, Machine Learning, Neural Networks, Computer Science, Pattern Recognition, Da- Base Management, And Other Areas.the Strategiesadopted By People From These Areas Are Often Di Erent, And A Synergy Results If This Is Recognized. The Ida Series Of Conferences Is Intended To Stimulate Interaction Between These Di Erent Areas,sothatmorepowerfultoolsemergeforextractingknowledgefromdataand A Better Understanding Is Developed Of The Process Of Intelligent Data Analysis. The Result Is A Conference That Has A Clear Focus (one Application Area:intelligent Data Analysis) And A Broad Scope (many Di Erent Methods And Techniques). Learning -- From Theoretical Learnability To Statistical Measures Of The Learnable -- Alm: A Methodology For Designing Accurate Linguistic Models For Intelligent Data Analysis -- A “top-down And Prune” Induction Scheme For Constrained Decision Committees -- Mining Clusters With Association Rules -- Evolutionary Computation To Search For Strongly Correlated Variables In High-dimensional Time-series -- The Biases Of Decision Tree Pruning Strategies -- Feature Selection As Retrospective Pruning In Hierarchical Clustering -- Discriminative Power Of Input Features In A Fuzzy Model -- Learning Elements Of Representations For Redescribing Robot Experiences -- “seeing“ Objects In Spatial Datasets -- Intelligent Monitoring Method Using Time Varying Binomial Distribution Models For Pseudo-periodic Communication Traffic -- Visualization -- Monitoring Human Information Processing Via Intelligent Data Analysis Of Eeg Recordings --^ Knowledge-based Visualization To Support Spatial Data Mining -- Probabilistic Topic Maps: Navigating Through Large Text Collections -- 3d Grand Tour For Multidimensional Data And Clusters -- Classification And Clustering -- A Decision Tree Algorithm For Ordinal Classification -- Discovering Dynamics Using Bayesian Clustering -- Integrating Declarative Knowledge In Hierarchical Clustering Tasks -- Nonparametric Linear Discriminant Analysis By Recursive Optimization With Random Initialization -- Supervised Classification Problems: How To Be Both Judge And Jury -- Temporal Pattern Generation Using Hidden Markov Model Based Unsupervised Classification -- Exploiting Similarity For Supporting Data Analysis And Problem Solving -- Multiple Prototype Model For Fuzzy Clustering -- A Comparison Of Genetic Programming Variants For Data Classification -- Fuzzy Clustering Based On Modified Distance Measures -- Building Classes In Object-based Languages By Automatic Clustering -- Integration --^ Adjusted Estimation For The Combination Of Classifiers -- Data-driven Theory Refinement Using Kbdistal -- Reasoning About Input-output Modeling Of Dynamical Systems -- Undoing Statistical Advice -- A Method For Temporal Knowledge Conversion -- Applications -- Intrusion Detection Through Behavioral Data -- Bayesian Neural Network Learning For Prediction In The Australian Dairy Industry -- Exploiting Sample-data Distributions To Reduce The Cost Of Nearest-neighbor Searches With Kd-trees -- Pump Failure Detection Using Support Vector Data Descriptions -- Data Mining For The Detection Of Turning Points In Financial Time Series -- Computer-assisted Classification Of Legal Abstracts -- Sequential Control Logic Inferring Method From Observed Plant I/o Data -- Evaluating An Eye Screening Test -- Application Of Rough Sets Algorithms To Prediction Of Aircraft Component Failure -- Media Mining -- Exploiting Structural Information For Text Classification On The Www --^ Multi-agent Web Information Retrieval: Neural Network Based Approach -- Adaptive Information Filtering Algorithms -- A Conceptual Graph Approach For Video Data Representation And Retrieval. David J. Hand, Joost N. Kok, Michael R. Berthold (eds.).
备用描述
Lecture Notes in Computer Science
Erscheinungsdatum: 28.07.1999
Erscheinungsdatum: 28.07.1999
开源日期
2010-08-30
❌ 此文件可能有问题,已从源库中隐藏。 有时这是应版权所有者的要求,有时是因为有更好的选择, 但有时是因为文件本身有问题。 下载可能仍然没问题,但我们建议先搜索替代文件。 更多细节:
- 在 Libgen.rs 的非虚构文学板块中不可见 ("no")
- 此文件可能有更好的版本,位于 md5:ae3dbbc0f0f549b4ccbf95d6c33f675d
- 在 Libgen.li 中不可见 ("no")
- 此文件可能有更好的版本,位于 md5:ae3dbbc0f0f549b4ccbf95d6c33f675d
如果您仍想下载此文件,请确保仅使用受信任的最新软件打开它。
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.