纳米相和纳米结构材料. 应用(I)手册 = Handbook of Nanophase and Nanostructured Materials--Materials Systemds and Applications(I) 🔍
王中林主编; 王中林
北京:清华大学出版社, New York, New York State, October 1, 2002
英语 [en] · PDF · 3.7MB · 2002 · 📗 未知类型的图书 · 🚀/duxiu/upload · Save
描述
The second part emphasizes the techniques used for characterizing the structure and properties of nanomaterials, aiming at describing the physical mechanism, data interpretation, and detailed applications of the techniques.
备选标题
Handbook of Nanophase and Nanostructured Materials Vol. 4
备选标题
纳米相和纳米结构材料应用 1 手册 英文版
备选作者
edited by Zhong Lin Wang, Yi Liu, and Ze Zhang
备用出版商
Qinghua University Press
备用出版商
Kluwer Academic/Plenum
备用版本
SpringerLINK ebook collection, New York, ©2003
备用版本
China, People's Republic, China
备用版本
Bei jing, 2002
元数据中的注释
Includes bibliographical references and indexes.
元数据中的注释
Bookmarks: p1 (p1): 1 Clusters
p1-2 (p1): 1.1 Introduction
p1-3 (p5): 1.2 Cluster Syntheses and Characterizations
p1-4 (p6): 1.2.1 Sputtering/SIMS
p1-5 (p7): 1.2.2 Supersonic Jet/Gas Condensation
p1-6 (p9): 1.2.3 Laser Ablation and Vaporization
p1-7 (p11): 1.2.4 Mass Spectrometers
p1-8 (p16): 1.3 Stability and Magic Numbers
p1-9 (p17): 1.3.1 Position Ordering and Momentum Ordering
p1-10 (p18): 1.3.2 Inert Element Clusters——Mackay lcosahedron
p1-11 (p22): 1.3.3 Alkali Halide Clusters
p1-12 (p24): 1.3.4 Semiconductor Clusters
p1-13 (p29): 1.3.5 Metal Clusters
p1-14 (p34): 1.4 Physical Properties
p1-15 (p34): 1.4.1 Size Effect of Electronic Properties
p1-16 (p41): 1.4.2 Lattice Dynamics and Phase Change
p1-17 (p53): 1.4.3 Optical Properties
p1-18 (p58): 1.4.4 Magnetism
p1-19 (p67): 1.4.5 Electronic Conductance
p1-20 (p75): 1.5 Perspectives
p1-21 (p76): References
p1-22 (p85): 2.1 Introduction
p2 (p85): 2 Semiconductor Nanoparticles
p2-2 (p86): 2.2 Synthesis of Semiconductor Nanoparticles
p2-3 (p89): 2.3 Characterization
p2-4 (p89): 2.3.1 Spectroscopy
p2-5 (p90): 2.3.2 Microscopy
p2-6 (p91): 2.3.3 X-ray Techniques
p2-7 (p92): 2.4 Theory
p2-8 (p92): 2.4.1 Quantum Size Confinement
p2-9 (p96): 2.4.2 Ionization Potential and Coulomb Blockade
p2-10 (p97): 2.5 Surface Modification
p2-11 (p97): 2.5.1 Influence of Surface and Surface Modification
p2-12 (p99): 2.5.2 Core/Shell and Coupled Semiconductor Nanoparticles
p2-13 (p101): 2.6 Phase Transitions
p2-14 (p104): 2.7 Nanocrystal Superlattices/Self-Assembly
p2-15 (p106): 2.8 Applications
p2-16 (p108): 2.9 Concluding Remarks
p2-17 (p109): References
p3 (p121): 3 Electrochemical Self-Assembly of Ordered Quantum Dot and Wire Arrays
p3-2 (p121): 3.1 Introduction
p3-3 (p122): 3.2 Fabricating Quantum Dots:Self-Assembly
p3-4 (p124): 3.3 Electrochemical Self-Assembly
p3-5 (p124): 3.3.1 Self-Assembling a Mask for Qrdered Quantum Dot and Wire Arrays by Electropolishing Aluminum
p3-6 (p130): 3.3.2 Theory of Pattern Formation during Electropolishing
p3-7 (p134): 3.4 Quantum Dots Produced by Filling Nanopores in Anodic Alumina
p3-8 (p135): 3.4.1 Theory of Pore Formation
p3-9 (p136): 3.4.2 Filling the Pores by Electrodeposition
p3-10 (p138): 3.5 Characterization of Quantum Dots Self-Assembled by Pore Filling
p3-11 (p139): 3.5.1 Linear Optical Properties
p3-12 (p141): 3.5.2 Non-linear Optical Properties
p3-13 (p143): 3.5.3 Nanomagnetic Properties
p3-14 (p144): 3.5.4 Electronic Bistability in Self-Assembled Quantum Dots and lts Circuit Applications
p3-15 (p146): 3.6 Conclusion
p3-16 (p146): References
p3-17 (p150): 4.1 Introduction to Nanowires
p4 (p150): 4 Semiconductor Nanowires
p4-2 (p151): 4.2 Methods of synthesis of the Nanowires
p4-3 (p151): 4.2.1 Chemical Vapor Deposition(CVD)
p4-4 (p152): 4.2.2 Laser Ablation
p4-5 (p153): 4.2.3 Carbon Nanotube Confined Reaction
p4-6 (p155): 4.2.4 Vapor Phase Evaporation
p4-7 (p157): 4.2.5 Electrochemical Deposition—Template Approach
p4-8 (p159): 4.3 Growth Mechanism of Nanowires
p4-9 (p159): 4.3.1 Vapor-Liquid-Solid(VLS)Growth
p4-10 (p163): 4.3.2 Solution-Liquid-Solid(SLS)Growth
p4-11 (p163): 4.3.3 Vapor Phase Epitaxy
p4-12 (p165): 4.4.1 Silicon and Germanium Nanowires
p4-13 (p165): 4.4 Nanowire Systems
p4-14 (p179): 4.4.2 Semiconductor Compound Nanowires
p4-15 (p186): 4.4.3 Metal Nanowires
p4-16 (p187): 4.4.4 Oxide Nanowires
p4-17 (p197): 4.4.5 Other Nanowires
p4-18 (p198): 4.5 Physical Property Study of the Nanowires
p4-19 (p198): 4.5.1 Photoluminescence of the SiNW’s
p4-20 (p204): 4.5.2 Raman Spectroscopy
p4-21 (p208): 4.5.3 Nano-electronics
p4-22 (p210): 4.6 Conclusion
p4-23 (p210): References
p4-24 (p215): 5.1 Introduction
p5 (p215): 5 Magnetic Nanocrystals and Arrays
p5-2 (p217): 5.2 Theory
p5-3 (p221): 5.3 Processing
p5-4 (p221): 5.3.1 Lithography
p5-5 (p224): 5.3.2 Atomic-Beam Holography
p5-6 (p224): 5.3.3 Scanning Probe-Assisted Patterning
p5-7 (p226): 5.3.4 Self-Assembling
p5-8 (p229): 5.4 Characterization
p5-9 (p229): 5.4.1 Physical Structure Characterzation
p5-10 (p231): 5.4.2 Magnetic Structure
p5-11 (p232): 5.4.3 Magnetic Measurements
p5-12 (p234): 5.5.1 Effect of Particle Size on Magnetic Properties
p5-13 (p234): 5.5 Properties,Applications and Materials
p5-14 (p237): 5.5.2 Applications
p5-15 (p237): 5.5.3 Materials Systems
p5-16 (p239): 5.6 Concluding Remarks
p5-17 (p240): References
p6 (p244): 6 Nanostructured Soft and Hard Magnetic Materials
p6-2 (p244): 6.1 Introduction
p6-3 (p245): 6.2 Nanostructured Soft Magnetic Materials
p6-4 (p245): 6.2.1 Development of Soft Magnetic Materials
p6-5 (p247): 6.2.2 Relationship between the Grain Size and the Coercivity
p6-6 (p249): 6.2.3 Novel Nanostructured Soft Magnetic Materials
p6-7 (p251): 6.3.1 History of Permanent Magnetic Materials
p6-8 (p251): 6.3 Nanostructured Permanent Magnetic Materials
p6-9 (p253): 6.3.2 Theoretical Outline of Exchange-Coupled Nanocomposite Magnets
p6-10 (p256): 6.3.3 Preparation and Characterization of the Materials
p6-11 (p263): 6.4 Nanomagnets
p6-12 (p264): 6.5 Concluding Remarks
p6-13 (p265): References
p7 (p269): 7 Nanomaterials for Information Storage
p7-2 (p269): 7.1 Introduction
p7-3 (p270): 7.2 Magnetic Recording Media
p7-4 (p270): 7.2.1 Introduction
p7-5 (p271): 7.2.2 Requirements for High-Density-Recording Media
p7-6 (p276): 7.2.3 Structure and Magnetic Properties of Recording Media
p7-7 (p285): 7.2.4 New Media Development
p7-8 (p297): 7.3 Magnetic Recording Heads
p7-9 (p297): 7.3.1 Introduction
p7-10 (p300): 7.3.2 Materials Requirements for Recording Head Applications
p7-11 (p302): 7.3.3 GMR Effect
p7-12 (p307): 7.3.4 Exchange Coupling between Ferro-and Antiferromagnetic Films
p7-13 (p315): 7.3.5 Magnetostriction
p7-14 (p318): 7.3.6 Future Trends of Recording Head Research
p7-15 (p319): 7.3.7 Perspective and Limitation of Magnetic Recording Technology
p7-16 (p320): 7.4 Magnetic Random Access Memory
p7-17 (p320): 7.4.1 Introduction
p7-18 (p321): 7.4.3 Basic Principle of a PSV Cell
p7-19 (p321): 7.4.2 MRAM Operations
p7-20 (p323): 7.4.4 A Single-Domain Model for PSV Cell
p7-21 (p326): 7.4.5 Micromagnetic Simulations
p7-22 (p327): 7.4.6 Bit End Designs
p7-23 (p328): 7.4.7 MRAM Materials
p7-24 (p329): 7.4.8 A SDT Cell
p7-25 (p330): 7.4.9 A Vertical GMR Cell
p7-26 (p331): 7.4.10 Switching Speed
p7-27 (p332): 7.4.11 Perspective
p7-28 (p332): References
p7-29 (p337): 8.1 Introduction
p8 (p337): 8 Magnetic Liquids
p8-2 (p338): 8.2 Synthesis Processes
p8-3 (p338): 8.2.1 Magnetic Particles
p8-4 (p340): 8.2.2 Carrier Liquid and Surfactant
p8-5 (p341): 8.3 Properties of Magnetic Liquids
p8-6 (p341): 8.3.1 Stability of Magnetic Liquids
p8-7 (p344): 8.3.2 Magnetic Properties
p8-8 (p346): 8.3.3 Ferrohydrodynamics
p8-9 (p348): 8.3.4 Optical Properties
p8-10 (p352): 8.3.5 Ultrasonic Properties
p8-11 (p353): 8.4 Applications
p8-12 (p354): 8.4.1 Dynamic Process Seal
p8-13 (p356): 8.4.2 Magnetic Liquid Film Bearing
p8-14 (p357): 8.4.3 Magnetic Liquid Separators
p8-15 (p358): 8.4.4 Magnetic Liquid Damper
p8-16 (p360): 8.4.5 Magnetic Liquid Loudspeaker
p8-17 (p361): 8.4.6 Magnetic Liquid Switch
p8-18 (p362): 8.4.7 Magnetic Liquid Grinding
p8-19 (p363): 8.4.8 Magnetic Liquid Sensors
p8-20 (p365): 8.4.9 Magnetic Liquid Printing
p8-21 (p365): 8.4.10 Biological and Medical Applications
p8-22 (p367): 8.4.11 Other Applications
p8-23 (p368): 8.5 Prospects
p8-24 (p369): References
p9 (p374): 9 Functional Oxide Nanocrystals
p9-2 (p374): 9.1 Introduction
p9-3 (p374): 9.2 Transition and Rare Earth Metal Oxides
p9-4 (p376): 9.3 Properties and Devices
p9-5 (p377): 9.3.1 Sensoring
p9-6 (p379): 9.3.2 Catalysis
p9-7 (p379): 9.3.3 Actuating
p9-8 (p380): 9.4 Silicates
p9-9 (p381): 9.5 Nanocomposites
p9-10 (p382): 9.6.1 Surface Atom Mobility and surface Reactivity
p9-11 (p382): 9.6 Special Effects of Nanosize Oxides
p9-12 (p384): 9.6.2 From Nanosize Crystals to Nanostructured Materials
p9-13 (p385): 9.7 Self-Assembly of Oxide Nanocrystals
p9-14 (p385): 9.7.1 Nanoparticles and Clusters
p9-15 (p386): 9.7.2 From Nanocrystals to Films
p9-16 (p388): 9.8 Meso-and Macroporous Oxides
p9-17 (p389): 9.8.1 Structural Cavity
p9-18 (p391): 9.8.2 Texture Porosity
p9-19 (p392): 9.9 Biomimetic Mineralization
p9-20 (p393): 9.10 Conclusion
p9-21 (p394): References
p9-22 (p396): Index
p1-2 (p1): 1.1 Introduction
p1-3 (p5): 1.2 Cluster Syntheses and Characterizations
p1-4 (p6): 1.2.1 Sputtering/SIMS
p1-5 (p7): 1.2.2 Supersonic Jet/Gas Condensation
p1-6 (p9): 1.2.3 Laser Ablation and Vaporization
p1-7 (p11): 1.2.4 Mass Spectrometers
p1-8 (p16): 1.3 Stability and Magic Numbers
p1-9 (p17): 1.3.1 Position Ordering and Momentum Ordering
p1-10 (p18): 1.3.2 Inert Element Clusters——Mackay lcosahedron
p1-11 (p22): 1.3.3 Alkali Halide Clusters
p1-12 (p24): 1.3.4 Semiconductor Clusters
p1-13 (p29): 1.3.5 Metal Clusters
p1-14 (p34): 1.4 Physical Properties
p1-15 (p34): 1.4.1 Size Effect of Electronic Properties
p1-16 (p41): 1.4.2 Lattice Dynamics and Phase Change
p1-17 (p53): 1.4.3 Optical Properties
p1-18 (p58): 1.4.4 Magnetism
p1-19 (p67): 1.4.5 Electronic Conductance
p1-20 (p75): 1.5 Perspectives
p1-21 (p76): References
p1-22 (p85): 2.1 Introduction
p2 (p85): 2 Semiconductor Nanoparticles
p2-2 (p86): 2.2 Synthesis of Semiconductor Nanoparticles
p2-3 (p89): 2.3 Characterization
p2-4 (p89): 2.3.1 Spectroscopy
p2-5 (p90): 2.3.2 Microscopy
p2-6 (p91): 2.3.3 X-ray Techniques
p2-7 (p92): 2.4 Theory
p2-8 (p92): 2.4.1 Quantum Size Confinement
p2-9 (p96): 2.4.2 Ionization Potential and Coulomb Blockade
p2-10 (p97): 2.5 Surface Modification
p2-11 (p97): 2.5.1 Influence of Surface and Surface Modification
p2-12 (p99): 2.5.2 Core/Shell and Coupled Semiconductor Nanoparticles
p2-13 (p101): 2.6 Phase Transitions
p2-14 (p104): 2.7 Nanocrystal Superlattices/Self-Assembly
p2-15 (p106): 2.8 Applications
p2-16 (p108): 2.9 Concluding Remarks
p2-17 (p109): References
p3 (p121): 3 Electrochemical Self-Assembly of Ordered Quantum Dot and Wire Arrays
p3-2 (p121): 3.1 Introduction
p3-3 (p122): 3.2 Fabricating Quantum Dots:Self-Assembly
p3-4 (p124): 3.3 Electrochemical Self-Assembly
p3-5 (p124): 3.3.1 Self-Assembling a Mask for Qrdered Quantum Dot and Wire Arrays by Electropolishing Aluminum
p3-6 (p130): 3.3.2 Theory of Pattern Formation during Electropolishing
p3-7 (p134): 3.4 Quantum Dots Produced by Filling Nanopores in Anodic Alumina
p3-8 (p135): 3.4.1 Theory of Pore Formation
p3-9 (p136): 3.4.2 Filling the Pores by Electrodeposition
p3-10 (p138): 3.5 Characterization of Quantum Dots Self-Assembled by Pore Filling
p3-11 (p139): 3.5.1 Linear Optical Properties
p3-12 (p141): 3.5.2 Non-linear Optical Properties
p3-13 (p143): 3.5.3 Nanomagnetic Properties
p3-14 (p144): 3.5.4 Electronic Bistability in Self-Assembled Quantum Dots and lts Circuit Applications
p3-15 (p146): 3.6 Conclusion
p3-16 (p146): References
p3-17 (p150): 4.1 Introduction to Nanowires
p4 (p150): 4 Semiconductor Nanowires
p4-2 (p151): 4.2 Methods of synthesis of the Nanowires
p4-3 (p151): 4.2.1 Chemical Vapor Deposition(CVD)
p4-4 (p152): 4.2.2 Laser Ablation
p4-5 (p153): 4.2.3 Carbon Nanotube Confined Reaction
p4-6 (p155): 4.2.4 Vapor Phase Evaporation
p4-7 (p157): 4.2.5 Electrochemical Deposition—Template Approach
p4-8 (p159): 4.3 Growth Mechanism of Nanowires
p4-9 (p159): 4.3.1 Vapor-Liquid-Solid(VLS)Growth
p4-10 (p163): 4.3.2 Solution-Liquid-Solid(SLS)Growth
p4-11 (p163): 4.3.3 Vapor Phase Epitaxy
p4-12 (p165): 4.4.1 Silicon and Germanium Nanowires
p4-13 (p165): 4.4 Nanowire Systems
p4-14 (p179): 4.4.2 Semiconductor Compound Nanowires
p4-15 (p186): 4.4.3 Metal Nanowires
p4-16 (p187): 4.4.4 Oxide Nanowires
p4-17 (p197): 4.4.5 Other Nanowires
p4-18 (p198): 4.5 Physical Property Study of the Nanowires
p4-19 (p198): 4.5.1 Photoluminescence of the SiNW’s
p4-20 (p204): 4.5.2 Raman Spectroscopy
p4-21 (p208): 4.5.3 Nano-electronics
p4-22 (p210): 4.6 Conclusion
p4-23 (p210): References
p4-24 (p215): 5.1 Introduction
p5 (p215): 5 Magnetic Nanocrystals and Arrays
p5-2 (p217): 5.2 Theory
p5-3 (p221): 5.3 Processing
p5-4 (p221): 5.3.1 Lithography
p5-5 (p224): 5.3.2 Atomic-Beam Holography
p5-6 (p224): 5.3.3 Scanning Probe-Assisted Patterning
p5-7 (p226): 5.3.4 Self-Assembling
p5-8 (p229): 5.4 Characterization
p5-9 (p229): 5.4.1 Physical Structure Characterzation
p5-10 (p231): 5.4.2 Magnetic Structure
p5-11 (p232): 5.4.3 Magnetic Measurements
p5-12 (p234): 5.5.1 Effect of Particle Size on Magnetic Properties
p5-13 (p234): 5.5 Properties,Applications and Materials
p5-14 (p237): 5.5.2 Applications
p5-15 (p237): 5.5.3 Materials Systems
p5-16 (p239): 5.6 Concluding Remarks
p5-17 (p240): References
p6 (p244): 6 Nanostructured Soft and Hard Magnetic Materials
p6-2 (p244): 6.1 Introduction
p6-3 (p245): 6.2 Nanostructured Soft Magnetic Materials
p6-4 (p245): 6.2.1 Development of Soft Magnetic Materials
p6-5 (p247): 6.2.2 Relationship between the Grain Size and the Coercivity
p6-6 (p249): 6.2.3 Novel Nanostructured Soft Magnetic Materials
p6-7 (p251): 6.3.1 History of Permanent Magnetic Materials
p6-8 (p251): 6.3 Nanostructured Permanent Magnetic Materials
p6-9 (p253): 6.3.2 Theoretical Outline of Exchange-Coupled Nanocomposite Magnets
p6-10 (p256): 6.3.3 Preparation and Characterization of the Materials
p6-11 (p263): 6.4 Nanomagnets
p6-12 (p264): 6.5 Concluding Remarks
p6-13 (p265): References
p7 (p269): 7 Nanomaterials for Information Storage
p7-2 (p269): 7.1 Introduction
p7-3 (p270): 7.2 Magnetic Recording Media
p7-4 (p270): 7.2.1 Introduction
p7-5 (p271): 7.2.2 Requirements for High-Density-Recording Media
p7-6 (p276): 7.2.3 Structure and Magnetic Properties of Recording Media
p7-7 (p285): 7.2.4 New Media Development
p7-8 (p297): 7.3 Magnetic Recording Heads
p7-9 (p297): 7.3.1 Introduction
p7-10 (p300): 7.3.2 Materials Requirements for Recording Head Applications
p7-11 (p302): 7.3.3 GMR Effect
p7-12 (p307): 7.3.4 Exchange Coupling between Ferro-and Antiferromagnetic Films
p7-13 (p315): 7.3.5 Magnetostriction
p7-14 (p318): 7.3.6 Future Trends of Recording Head Research
p7-15 (p319): 7.3.7 Perspective and Limitation of Magnetic Recording Technology
p7-16 (p320): 7.4 Magnetic Random Access Memory
p7-17 (p320): 7.4.1 Introduction
p7-18 (p321): 7.4.3 Basic Principle of a PSV Cell
p7-19 (p321): 7.4.2 MRAM Operations
p7-20 (p323): 7.4.4 A Single-Domain Model for PSV Cell
p7-21 (p326): 7.4.5 Micromagnetic Simulations
p7-22 (p327): 7.4.6 Bit End Designs
p7-23 (p328): 7.4.7 MRAM Materials
p7-24 (p329): 7.4.8 A SDT Cell
p7-25 (p330): 7.4.9 A Vertical GMR Cell
p7-26 (p331): 7.4.10 Switching Speed
p7-27 (p332): 7.4.11 Perspective
p7-28 (p332): References
p7-29 (p337): 8.1 Introduction
p8 (p337): 8 Magnetic Liquids
p8-2 (p338): 8.2 Synthesis Processes
p8-3 (p338): 8.2.1 Magnetic Particles
p8-4 (p340): 8.2.2 Carrier Liquid and Surfactant
p8-5 (p341): 8.3 Properties of Magnetic Liquids
p8-6 (p341): 8.3.1 Stability of Magnetic Liquids
p8-7 (p344): 8.3.2 Magnetic Properties
p8-8 (p346): 8.3.3 Ferrohydrodynamics
p8-9 (p348): 8.3.4 Optical Properties
p8-10 (p352): 8.3.5 Ultrasonic Properties
p8-11 (p353): 8.4 Applications
p8-12 (p354): 8.4.1 Dynamic Process Seal
p8-13 (p356): 8.4.2 Magnetic Liquid Film Bearing
p8-14 (p357): 8.4.3 Magnetic Liquid Separators
p8-15 (p358): 8.4.4 Magnetic Liquid Damper
p8-16 (p360): 8.4.5 Magnetic Liquid Loudspeaker
p8-17 (p361): 8.4.6 Magnetic Liquid Switch
p8-18 (p362): 8.4.7 Magnetic Liquid Grinding
p8-19 (p363): 8.4.8 Magnetic Liquid Sensors
p8-20 (p365): 8.4.9 Magnetic Liquid Printing
p8-21 (p365): 8.4.10 Biological and Medical Applications
p8-22 (p367): 8.4.11 Other Applications
p8-23 (p368): 8.5 Prospects
p8-24 (p369): References
p9 (p374): 9 Functional Oxide Nanocrystals
p9-2 (p374): 9.1 Introduction
p9-3 (p374): 9.2 Transition and Rare Earth Metal Oxides
p9-4 (p376): 9.3 Properties and Devices
p9-5 (p377): 9.3.1 Sensoring
p9-6 (p379): 9.3.2 Catalysis
p9-7 (p379): 9.3.3 Actuating
p9-8 (p380): 9.4 Silicates
p9-9 (p381): 9.5 Nanocomposites
p9-10 (p382): 9.6.1 Surface Atom Mobility and surface Reactivity
p9-11 (p382): 9.6 Special Effects of Nanosize Oxides
p9-12 (p384): 9.6.2 From Nanosize Crystals to Nanostructured Materials
p9-13 (p385): 9.7 Self-Assembly of Oxide Nanocrystals
p9-14 (p385): 9.7.1 Nanoparticles and Clusters
p9-15 (p386): 9.7.2 From Nanocrystals to Films
p9-16 (p388): 9.8 Meso-and Macroporous Oxides
p9-17 (p389): 9.8.1 Structural Cavity
p9-18 (p391): 9.8.2 Texture Porosity
p9-19 (p392): 9.9 Biomimetic Mineralization
p9-20 (p393): 9.10 Conclusion
p9-21 (p394): References
p9-22 (p396): Index
备用描述
1Clusters 22页 22
2SemlcomductorNanoparticles 108页 108
3ElectrochemialSelf-AssemblyofOrdereQuantumDotandWireArrays 145页 145
4SemiconductorNanowlres 175页 175
5MagneticNanocrystalsandArrays 243页 243
6NanostructuredSoftandHardMagneticMaterlals 273页 273
7NanomaterlalsforInformationStorage 299页 299
8MagneticLiquids 371页 371
9FunctionalOxideNanocrystals 410页 410
Index 433页 433
2SemlcomductorNanoparticles 108页 108
3ElectrochemialSelf-AssemblyofOrdereQuantumDotandWireArrays 145页 145
4SemiconductorNanowlres 175页 175
5MagneticNanocrystalsandArrays 243页 243
6NanostructuredSoftandHardMagneticMaterlals 273页 273
7NanomaterlalsforInformationStorage 299页 299
8MagneticLiquids 371页 371
9FunctionalOxideNanocrystals 410页 410
Index 433页 433
备用描述
v. 1. Synthesis
v. 2. Characterization
v. 3.,pt.1-2. Materials systems and applications I-II.
v. 2. Characterization
v. 3.,pt.1-2. Materials systems and applications I-II.
开源日期
2024-12-16
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.