Principles of Partial Differential Equations (Problem Books in Mathematics) 🔍
by Alexander Komech, Andrew Komech Springer-Verlag New York, Problem Books in Mathematics, Problem Books in Mathematics, 1, 2009
英语 [en] · PDF · 1.5MB · 2009 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/zlib · Save
描述
This book is intended to give the reader an opportunity to master solving PDE problems. Our main goal was to have a concise text that would cover the classical tools of PDE theory that are used in today’s science and engineering, such as characteristics, the wave propagation, the Fourier method, distributions, Sobolev spaces, fundamental solutions, and Green’s functions. While introductory Fourier method – based PDE books do not give an adequate description of these areas, the more advanced PDE books are quite theoretical and require a high level of mathematical background from a reader. This book was written specifically to fill this gap, satisfying the demand of the wide range of end users who need the knowledge of how to solve the PDE problems and at the same time are not going to specialize in this area of mathematics. Arguably, this is the shortest PDE course, which stretches far beyond common, Fourier method – based PDE texts. For example, [Hab03], which is a common thorough textbook on partial differential equations, teaches a similar set of tools while being about five times longer.
备用文件名
lgli/Principles of Partial Differential Equations (2009) (ATTiCA).pdf
备用文件名
lgrsnf/Principles of Partial Differential Equations (2009) (ATTiCA).pdf
备用文件名
scihub/10.1007/978-1-4419-1096-7.pdf
备用文件名
zlib/Mathematics/Alexander Komech, Andrew Komech/Principles of Partial Differential Equations_640321.pdf
备选作者
Komech, Alexander, Komech, Andrew
备选作者
A. I Komech
备用出版商
Springer US
备用版本
Problem Books in Mathematics, First., New York, NY, New York State, 2009
备用版本
Springer Nature (Textbooks & Major Reference Works), New York, NY, 2009
备用版本
United States, United States of America
备用版本
2010, 2009
元数据中的注释
lg146115
元数据中的注释
{"container_title":"Problem Books in Mathematics","edition":"1","isbns":["1441910956","1441910964","9781441910950","9781441910967"],"issns":["0941-3502"],"last_page":161,"publisher":"Springer New York","series":"Problem Books in Mathematics"}
元数据中的注释
MiU
备用描述
Principles of Partial Differential Equations (2009) (ATTiCA)......Page 1
Preface......Page 5
Acknowledgements......Page 6
Contents......Page 7
1 Derivation of the d’Alembert equation......Page 9
2 The d’Alembert method for infinite string......Page 15
3 Analysis of the d’Alembert formula......Page 20
4 Second-order hyperbolic equations in the plane......Page 27
5 Semi-infinite string......Page 38
6 Finite string......Page 52
7 Wave equation with many independent variables......Page 54
8 General hyperbolic equations......Page 64
9 Derivation of the heat equation......Page 72
10 Mixed problem for the heat equation......Page 74
11 The Sturm – Liouville problem......Page 75
12 Eigenfunction expansions......Page 81
13 The Fourier method for the heat equation......Page 85
14 Mixed problem for the d’Alembert equation......Page 90
15 The Fourier method for nonhomogeneous equations......Page 93
16 The Fourier method for nonhomogeneous boundary conditions......Page 100
17 The Fourier method for the Laplace equation......Page 102
18 Motivation......Page 111
19 Distributions......Page 115
20 Operations on distributions......Page 116
21 Differentiation of jumps and the product rule......Page 121
22 Fundamental solutions of ordinary differential equations......Page 124
23 Green’s function on an interval......Page 127
24 Solvability condition for the boundary value problems......Page 131
25 The Sobolev functional spaces......Page 134
26 Well-posedness of the wave equation in the Sobolev spaces......Page 136
27 Solutions to the wave equation in the sense of distributions......Page 137
28 Fundamental solutions of the Laplace operator in Rn......Page 138
29 Potentials and their properties......Page 142
30 Computing potentials via the Gauss theorem......Page 148
31 Method of reflections......Page 149
32 Green’s functions in 2D via conformal mappings......Page 154
Appendix A Classification of the second-order equations......Page 159
References......Page 163
Index......Page 164
备用描述
This concise book covers the classical tools of PDE theory used in today's science and engineering: characteristics, the wave propagation, the Fourier method, distributions, Sobolev spaces, fundamental solutions, and Green's functions. The approach is problem-oriented, giving the reader an opportunity to master solution techniques. The theoretical part is rigorous and with important details presented with care. Hints are provided to help the reader restore the arguments to their full rigor. Many examples from physics are intended to keep the book intuitive and to illustrate the applied nature of the subject. The book is useful for a higher-level undergraduate course and for self-study.
Erscheinungsdatum: 05.10.2009
开源日期
2010-02-18
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。