Multistrategy Learning : A Special Issue of MACHINE LEARNING 🔍
Ryszard S. Michalski (auth.), Ryszard S. Michalski (eds.) Springer US, 10.1007/97, 1993
英语 [en] · PDF · 18.5MB · 1993 · 📘 非小说类图书 · 🚀/lgli/scihub/zlib · Save
描述
Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. Multistrategy Learning contains contributions characteristic of the current research in this area.
备用文件名
zlib/no-category/Michalski, Ryszard S/Multistrategy Learning ||_73415613.pdf
备选作者
edited by Ryszard S. Michalski
备用版本
The Springer International Series in Engineering and Computer Science, Knowledge Representation, Learning and Expert Systems -- 240, Springer International Series in Engineering and Computer Science, Knowledge Representation, Learning and Expert Systems -- 240., Boston, MA, Massachusetts, 1993
备用版本
The Kluwer International Series in Engineering and Computer Science, Boston, MA, 1993
备用版本
United States, United States of America
备用版本
Springer Nature, New York, NY, 2012
元数据中的注释
sm41109902
元数据中的注释
Online full text is restricted to subscribers.
Also available in print.
Mode of access: World Wide Web.
开源日期
2015-08-03
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。