Stochastic Analysis (Monographs in Mathematical Economics Book 3) 🔍
Shigeo Kusuoka Springer Singapore : Imprint: Springer, Monographs in Mathematical Economics, Monographs in Mathematical Economics 3, 1, 2020
英语 [en] · PDF · 2.0MB · 2020 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/upload/zlib · Save
描述
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas.
In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
备用文件名
nexusstc/Stochastic Analysis/07e7b7d3e058b034e7cebf60643bcea8.pdf
备用文件名
lgli/10.1007%2F978-981-15-8864-8.pdf
备用文件名
lgrsnf/10.1007%2F978-981-15-8864-8.pdf
备用文件名
scihub/10.1007/978-981-15-8864-8.pdf
备用文件名
zlib/Science (General)/Shigeo Kusuoka/Stochastic Analysis_11237002.pdf
备选标题
477627_1_En_Print.indd
备选作者
Kusuoka, Shigeo
备选作者
0009172
备用出版商
Springer Nature Singapore Pte Ltd Fka Springer Science + Business Media Singapore Pte Ltd
备用版本
Monographs in Mathematical Economics, 3, 1st ed. 2020, Singapore, 2020
备用版本
Monographs in mathematical economics, volume 3, Singapore, 2020
备用版本
Springer Nature, Singapore, 2020
备用版本
Singapore, Singapore
元数据中的注释
sm84052500
元数据中的注释
producers:
Acrobat Distiller 10.1.16 (Windows)
元数据中的注释
{"container_title":"Monographs in Mathematical Economics","content":{"parsed_at":1699433614,"source_extension":"epub"},"edition":"1","isbns":["9789811588631","9789811588648","9811588635","9811588643"],"issns":["2364-8279","2364-8287"],"last_page":218,"publisher":"Springer Singapore;Springer","series":"Monographs in Mathematical Economics 3"}
备用描述
Preface 7
Contents 8
Notation 10
1 Preparations from Probability Theory 12
1.1 Review 12
1.2 Lp-Space 19
1.3 Conditional Expectation 22
1.4 Jensen's Inequality for Conditional Expectations 28
1.5 Some Remarks 30
2 Martingale with Discrete Parameter 32
2.1 Definition of Martingale 32
2.2 Doob's Inequality 33
2.3 Stopping Time 35
2.4 Doob's Decomposition and Martingale Transformation 37
2.5 Upcrossing Number and Downcrossing Number 42
2.6 Uniform Integrability 46
2.7 Lévy's Theorem 50
2.8 A Remark on Doob's Decomposition 51
3 Martingale with Continuous Parameter 54
3.1 Several Notions on Stochastic Processes 54
3.2 D-Modification 56
3.3 Doob's Inequality and Stopping Times 59
3.4 Doob–Meyer Decomposition 64
3.5 Quadratic Variation 72
3.6 Continuous Local Martingale 77
3.7 Brownian Motion 84
3.8 Optimal Stopping Time 90
4 Stochastic Integral 97
4.1 Spaces of Stochastic Processes 97
4.2 Continuous Semi-martingales 105
4.3 Itô's Formula 110
5 Applications of Stochastic Integral 115
5.1 Characterization of Brownian Motion 115
5.2 Representation of Continuous Local Martingale 120
5.3 Girsanov Transformation 122
5.4 Moment Inequalities 128
5.5 Itô's Representation Theorem 131
5.6 Property of Brownian Motion 137
5.7 Tanaka's Formula 142
6 Stochastic Differential Equation 145
6.1 Itô's Stochastic Differential Equation and Euler–Maruyama Approximation 145
6.2 Definition of Stochastic Differential Equation 158
6.3 Uniqueness of a Solution to Martingale Problem 166
6.4 Time Homogeneous Stochastic Differential Equation 169
6.5 Smoothness of Solutions to Stochastic Differential Equations 173
7 Application to Finance 188
7.1 Basic Situation and Dynamical Portfolio Strategy 188
7.2 Black–Scholes Model 192
7.3 General Case 198
7.4 American Derivative 208
8 Appendices 211
8.1 Dynkin's Lemma 211
8.2 Convex Function 212
8.3 L2-Weakly Compact 214
8.4 Generalized Inverse Matrix 216
8.5 Proof of Theorem 5.6.1 217
8.6 Gronwall's Inequality 222
Appendix References 223
223
Index 224
备用描述
Front Matter ....Pages i-xii
Preparations from Probability Theory (Shigeo Kusuoka)....Pages 1-20
Martingale with Discrete Parameter (Shigeo Kusuoka)....Pages 21-42
Martingale with Continuous Parameter (Shigeo Kusuoka)....Pages 43-85
Stochastic Integral (Shigeo Kusuoka)....Pages 87-104
Applications of Stochastic Integral (Shigeo Kusuoka)....Pages 105-134
Stochastic Differential Equation (Shigeo Kusuoka)....Pages 135-177
Application to Finance (Shigeo Kusuoka)....Pages 179-201
Appendices (Shigeo Kusuoka)....Pages 203-214
Back Matter ....Pages 215-218
备用描述
Chapter 1. Preparations from probability theory -- Chapter 2. Martingale with discrete parameter -- Chapter 3. Martingale with continuous parameter -- Chapter 4. Stochastic integral -- Chapter 5. Applications of stochastic integral -- Chapter 6. Stochastic differential equation -- Chapter 7. Application to finance -- Chapter 8. Appendices -- References
备用描述
Monographs in Mathematical Economics
Erscheinungsdatum: 20.10.2020
开源日期
2020-10-27
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。