Breakdown Phenomena in Semiconductors and Semiconductor Devices (Selected Topics in Electronics and Systems) (Selected Topics in Electronics and Systems) 🔍
Michael E Levinshtein; Juha Kostamovaara; Sergey Vainshtein
World Scientific Publishing Co Pte Ltd, Selected Topics in Electronics and Systems, Selected topics in electronics and systems 36, 2005
英语 [en] · PDF · 9.6MB · 2005 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
Impact ionization, avalanche and breakdown phenomena form the basis of many very interesting and important semiconductor devices, such as avalanche photodiodes, avalanche transistors, suppressors, sharpening diodes (diodes with delayed breakdown), as well as IMPATT and TRAPATT diodes. In order to provide maximal speed and power, many semiconductor devices must operate under or very close to breakdown conditions. Consequently, an acquaintance with breakdown phenomena is essential for scientists or engineers dealing with semiconductor devices. The aim of this book is to summarize the main experimental results on avalanche and breakdown phenomena in semiconductors and semiconductor devices and to analyze their features from a unified point of view. Attention is focused on the phenomenology of avalanche multiplication and the various kinds of breakdown phenomena and their qualitative analysis.
备用文件名
nexusstc/Breakdown Phenomena in Semiconductors and Semiconductor Devices/02727aa7c5dbacbe0181d5c1533f68a8.pdf
备用文件名
lgli/Y. dl_avaxhome 87010 _=breakdphensem.pdf
备用文件名
lgrsnf/Y. dl_avaxhome 87010 _=breakdphensem.pdf
备用文件名
zlib/Engineering/Michael Levinshtein, Juha Kostamovaara, Sergey Vainshtein/Breakdown Phenomena in Semiconductors and Semiconductor Devices_701236.pdf
备选作者
M E Levinshteĭn; Juha Kostamovaara; Sergey Vainshtein; World Scientific (Firm)
备选作者
Levinshtein, Michael E, Kostamovaara, Juha, Vainshtein, Sergey
备选作者
Juha Kostamovaara, Sergey Vainshtein, Michael Levinshtein
备选作者
Mikhail Efimovich Levinshteĭn
备选作者
Michail E Levinštein
备用出版商
World Scientific Publishing Company
备用版本
Selected topics in electronics and systems -- v. 36, Singapore, Hackensack, N.J, Singapore, 2005
备用版本
Selected topics in electronics and systems, v. 36, New Jersey ; London, ©2005
备用版本
World Scientific Publishing Company, New Jersey, 2005
备用版本
September 30, 2005
备用版本
1, 20050907
元数据中的注释
87010
元数据中的注释
avaxhome.ws
元数据中的注释
lg270725
元数据中的注释
{"container_title":"Selected Topics in Electronics and Systems","isbns":["9789812563958","9789812703330","9812563954","9812703330"],"issns":["1793-1274"],"last_page":223,"publisher":"WORLD SCIENTIFIC","series":"Selected topics in electronics and systems 36"}
元数据中的注释
Includes bibliographical references (p. 185-194) and indexes.
备用描述
Contents 12
Preface 8
Chapter 1 Introductory Chapter 16
1.1 Elementary act of impact ionization 16
1.2 Auger recombination 20
1.3 Energy of electrons and holes as a function of electric field 23
1.4 Main approaches for describing ionization phenomena 25
1.4.1 Approximation of the characteristic breakdown field F; 25
1.4.2 Monte- Carlo simulation 28
1.4.3 Approximation of ionization rates 29
Chapter 2 Avalanche Multiplication 36
2.1 Fundamentals of avalanche multiplication 36
2.2 Avalanche photodiodes 41
2.2.1 Spectral sensitivity 41
2.2.2 Dark current 42
2.2.3 Quantum eficiency 44
2.2.4 Time response 44
2.2.5 Multiplication factor 47
2.2.6 Avalanche excess noise 51
Chapter 3 Static Avalanche Breakdown 54
3.1 Introduction 54
3.2 General form of the static “breakdown” current-voltage characteristic 54
3.2.1 Microplasma breakdown 56
3.2.2 Homogeneous ( ccmature77) breakdown 59
3.2.2.1 Contact resistivity 59
3.2.2.2 Thermal resistance 60
3.2.2.3 Space-charge resistance 62
3.2.3 Negative diferential resistance 65
3.2.3.1 Qualitative consideration 65
3.2.3.2 The zero doping ( p - i - n) structure 65
3.2.3.3 Computer simulation 70
3.2.4 Second part of the current-voltage characteristic, with posi- tive diflerential resistance at very high current densities 73
3.3 Avalanche suppressor diodes 75
3.3.1 Principle of operation 75
3.3.2 Main parameters 77
3.4 IMPATT diodes 80
3.4.1 Principle of operation 81
3.4.2 Some physical problems that arise at very high frequencies 90
Chapter 4 Avalanche Injection 96
4.1 Introduction 96
4.2 Avalanche injection in n + - n - n+ ( p + - p - p + ) structures 96
4.3 Avalanche injection in bipolar transistors 106
4.3.1 Introduction 106
4.3.2 Avalanche transistor: conventional regime of operation 107
4.3.2.1 Difference in breakdown voltages of a BJT between the common- base and common-emitter configurations 107
4.3.2.2 Dependence of the bipolar transistor gain coefficient QO o n current density 113
4.3.2.3 Main features of ABT operation in a conventional regime 118
4.4 Operation regime of a Si avalanche transistor at very high cur- rent densities 120
4.4.1 Introduction 120
4.4.2 Steady-state collector field distribution. Residual collector voltage 124
4.4.3 Transient properties of Si avalanche transistor at extreme current densities 130
4.5 Operation regime of GaAs avalanche transistor at very high current densities 137
4.5.1 Experimental results 137
4.5.2 Breakdown in moving Gunn domain in GaAs: qualitative analysis 139
4.5.3 Computer simulations of superfast switching in GaAs avalanche transistor 148
Chapter 5 Dynamic Breakdown 152
5.1 Introduction 152
5.2 Impact ionization front (TRAPATT zone) 155
5.3 Silicon Avalanche Sharpers (SAS) 157
5.3.1 Computer simulations and comparison with experimental results 159
5.3.2 Stability of the plane ionization front 163
5.3.2.1 Short-wavelength instability of the plane ionization front 165
5.3.2.2 Long-wave length instability of the plane ionization front 167
5.3.3 The problem of the initial carriers 169
5.4 GaAs diodes with delayed breakdown 172
5.5 Superfast switching of GaAs thyristors 177
5.6 Main features of streamer breakdown 183
5.6.1 Introduction 183
5.6.2 Analytical theory of a streamer discharge 184
5.6.3 Computer simulation 191
Conclusion 194
List of Symbols 196
Bibliography 200
Index 210
AUTHOR INDEX 214
Preface 8
Chapter 1 Introductory Chapter 16
1.1 Elementary act of impact ionization 16
1.2 Auger recombination 20
1.3 Energy of electrons and holes as a function of electric field 23
1.4 Main approaches for describing ionization phenomena 25
1.4.1 Approximation of the characteristic breakdown field F; 25
1.4.2 Monte- Carlo simulation 28
1.4.3 Approximation of ionization rates 29
Chapter 2 Avalanche Multiplication 36
2.1 Fundamentals of avalanche multiplication 36
2.2 Avalanche photodiodes 41
2.2.1 Spectral sensitivity 41
2.2.2 Dark current 42
2.2.3 Quantum eficiency 44
2.2.4 Time response 44
2.2.5 Multiplication factor 47
2.2.6 Avalanche excess noise 51
Chapter 3 Static Avalanche Breakdown 54
3.1 Introduction 54
3.2 General form of the static “breakdown” current-voltage characteristic 54
3.2.1 Microplasma breakdown 56
3.2.2 Homogeneous ( ccmature77) breakdown 59
3.2.2.1 Contact resistivity 59
3.2.2.2 Thermal resistance 60
3.2.2.3 Space-charge resistance 62
3.2.3 Negative diferential resistance 65
3.2.3.1 Qualitative consideration 65
3.2.3.2 The zero doping ( p - i - n) structure 65
3.2.3.3 Computer simulation 70
3.2.4 Second part of the current-voltage characteristic, with posi- tive diflerential resistance at very high current densities 73
3.3 Avalanche suppressor diodes 75
3.3.1 Principle of operation 75
3.3.2 Main parameters 77
3.4 IMPATT diodes 80
3.4.1 Principle of operation 81
3.4.2 Some physical problems that arise at very high frequencies 90
Chapter 4 Avalanche Injection 96
4.1 Introduction 96
4.2 Avalanche injection in n + - n - n+ ( p + - p - p + ) structures 96
4.3 Avalanche injection in bipolar transistors 106
4.3.1 Introduction 106
4.3.2 Avalanche transistor: conventional regime of operation 107
4.3.2.1 Difference in breakdown voltages of a BJT between the common- base and common-emitter configurations 107
4.3.2.2 Dependence of the bipolar transistor gain coefficient QO o n current density 113
4.3.2.3 Main features of ABT operation in a conventional regime 118
4.4 Operation regime of a Si avalanche transistor at very high cur- rent densities 120
4.4.1 Introduction 120
4.4.2 Steady-state collector field distribution. Residual collector voltage 124
4.4.3 Transient properties of Si avalanche transistor at extreme current densities 130
4.5 Operation regime of GaAs avalanche transistor at very high current densities 137
4.5.1 Experimental results 137
4.5.2 Breakdown in moving Gunn domain in GaAs: qualitative analysis 139
4.5.3 Computer simulations of superfast switching in GaAs avalanche transistor 148
Chapter 5 Dynamic Breakdown 152
5.1 Introduction 152
5.2 Impact ionization front (TRAPATT zone) 155
5.3 Silicon Avalanche Sharpers (SAS) 157
5.3.1 Computer simulations and comparison with experimental results 159
5.3.2 Stability of the plane ionization front 163
5.3.2.1 Short-wavelength instability of the plane ionization front 165
5.3.2.2 Long-wave length instability of the plane ionization front 167
5.3.3 The problem of the initial carriers 169
5.4 GaAs diodes with delayed breakdown 172
5.5 Superfast switching of GaAs thyristors 177
5.6 Main features of streamer breakdown 183
5.6.1 Introduction 183
5.6.2 Analytical theory of a streamer discharge 184
5.6.3 Computer simulation 191
Conclusion 194
List of Symbols 196
Bibliography 200
Index 210
AUTHOR INDEX 214
备用描述
Contents......Page 12
Preface......Page 8
1.1 Elementary act of impact ionization......Page 16
1.2 Auger recombination......Page 20
1.3 Energy of electrons and holes as a function of electric field......Page 23
1.4.1 Approximation of the characteristic breakdown field F;......Page 25
1.4.2 Monte- Carlo simulation......Page 28
1.4.3 Approximation of ionization rates......Page 29
2.1 Fundamentals of avalanche multiplication......Page 36
2.2.1 Spectral sensitivity......Page 41
2.2.2 Dark current......Page 42
2.2.4 Time response......Page 44
2.2.5 Multiplication factor......Page 47
2.2.6 Avalanche excess noise......Page 51
3.2 General form of the static “breakdown” current-voltage characteristic......Page 54
3.2.1 Microplasma breakdown......Page 56
3.2.2.1 Contact resistivity......Page 59
3.2.2.2 Thermal resistance......Page 60
3.2.2.3 Space-charge resistance......Page 62
3.2.3.2 The zero doping ( p - i - n) structure......Page 65
3.2.3.3 Computer simulation......Page 70
3.2.4 Second part of the current-voltage characteristic, with posi- tive diflerential resistance at very high current densities......Page 73
3.3.1 Principle of operation......Page 75
3.3.2 Main parameters......Page 77
3.4 IMPATT diodes......Page 80
3.4.1 Principle of operation......Page 81
3.4.2 Some physical problems that arise at very high frequencies......Page 90
4.2 Avalanche injection in n + - n - n+ ( p + - p - p + ) structures......Page 96
4.3.1 Introduction......Page 106
4.3.2.1 Difference in breakdown voltages of a BJT between the common- base and common-emitter configurations......Page 107
4.3.2.2 Dependence of the bipolar transistor gain coefficient QO o n current density......Page 113
4.3.2.3 Main features of ABT operation in a conventional regime......Page 118
4.4.1 Introduction......Page 120
4.4.2 Steady-state collector field distribution. Residual collector voltage......Page 124
4.4.3 Transient properties of Si avalanche transistor at extreme current densities......Page 130
4.5.1 Experimental results......Page 137
4.5.2 Breakdown in moving Gunn domain in GaAs: qualitative analysis......Page 139
4.5.3 Computer simulations of superfast switching in GaAs avalanche transistor......Page 148
5.1 Introduction......Page 152
5.2 Impact ionization front (TRAPATT zone)......Page 155
5.3 Silicon Avalanche Sharpers (SAS)......Page 157
5.3.1 Computer simulations and comparison with experimental results......Page 159
5.3.2 Stability of the plane ionization front......Page 163
5.3.2.1 Short-wavelength instability of the plane ionization front......Page 165
5.3.2.2 Long-wave length instability of the plane ionization front......Page 167
5.3.3 The problem of the initial carriers......Page 169
5.4 GaAs diodes with delayed breakdown......Page 172
5.5 Superfast switching of GaAs thyristors......Page 177
5.6.1 Introduction......Page 183
5.6.2 Analytical theory of a streamer discharge......Page 184
5.6.3 Computer simulation......Page 191
Conclusion......Page 194
List of Symbols......Page 196
Bibliography......Page 200
Index......Page 210
AUTHOR INDEX......Page 214
Preface......Page 8
1.1 Elementary act of impact ionization......Page 16
1.2 Auger recombination......Page 20
1.3 Energy of electrons and holes as a function of electric field......Page 23
1.4.1 Approximation of the characteristic breakdown field F;......Page 25
1.4.2 Monte- Carlo simulation......Page 28
1.4.3 Approximation of ionization rates......Page 29
2.1 Fundamentals of avalanche multiplication......Page 36
2.2.1 Spectral sensitivity......Page 41
2.2.2 Dark current......Page 42
2.2.4 Time response......Page 44
2.2.5 Multiplication factor......Page 47
2.2.6 Avalanche excess noise......Page 51
3.2 General form of the static “breakdown” current-voltage characteristic......Page 54
3.2.1 Microplasma breakdown......Page 56
3.2.2.1 Contact resistivity......Page 59
3.2.2.2 Thermal resistance......Page 60
3.2.2.3 Space-charge resistance......Page 62
3.2.3.2 The zero doping ( p - i - n) structure......Page 65
3.2.3.3 Computer simulation......Page 70
3.2.4 Second part of the current-voltage characteristic, with posi- tive diflerential resistance at very high current densities......Page 73
3.3.1 Principle of operation......Page 75
3.3.2 Main parameters......Page 77
3.4 IMPATT diodes......Page 80
3.4.1 Principle of operation......Page 81
3.4.2 Some physical problems that arise at very high frequencies......Page 90
4.2 Avalanche injection in n + - n - n+ ( p + - p - p + ) structures......Page 96
4.3.1 Introduction......Page 106
4.3.2.1 Difference in breakdown voltages of a BJT between the common- base and common-emitter configurations......Page 107
4.3.2.2 Dependence of the bipolar transistor gain coefficient QO o n current density......Page 113
4.3.2.3 Main features of ABT operation in a conventional regime......Page 118
4.4.1 Introduction......Page 120
4.4.2 Steady-state collector field distribution. Residual collector voltage......Page 124
4.4.3 Transient properties of Si avalanche transistor at extreme current densities......Page 130
4.5.1 Experimental results......Page 137
4.5.2 Breakdown in moving Gunn domain in GaAs: qualitative analysis......Page 139
4.5.3 Computer simulations of superfast switching in GaAs avalanche transistor......Page 148
5.1 Introduction......Page 152
5.2 Impact ionization front (TRAPATT zone)......Page 155
5.3 Silicon Avalanche Sharpers (SAS)......Page 157
5.3.1 Computer simulations and comparison with experimental results......Page 159
5.3.2 Stability of the plane ionization front......Page 163
5.3.2.1 Short-wavelength instability of the plane ionization front......Page 165
5.3.2.2 Long-wave length instability of the plane ionization front......Page 167
5.3.3 The problem of the initial carriers......Page 169
5.4 GaAs diodes with delayed breakdown......Page 172
5.5 Superfast switching of GaAs thyristors......Page 177
5.6.1 Introduction......Page 183
5.6.2 Analytical theory of a streamer discharge......Page 184
5.6.3 Computer simulation......Page 191
Conclusion......Page 194
List of Symbols......Page 196
Bibliography......Page 200
Index......Page 210
AUTHOR INDEX......Page 214
备用描述
1. Introductory chapter. 1.1. Elementary act of impact ionization. 1.2. Auger recombination. 1.3. Energy of electrons and holes as a function of electric field. 1.4. Main approaches for describing ionization phenomena -- 2. Avalanche multiplication. 2.1. Fundamentals of avalanche multiplication. 2.2. Avalanche photodiodes -- 3. Static avalanche breakdown. 3.1. Introduction. 3.2. General form of the static "breakdown" current-voltage characteristic. 3.3. Avalanche suppressor diodes. 3.4. IMPATT diodes -- 4. Avalanche injection. 4.1. Introduction. 4.2. Avalanche injection in n[symbol](p[symbol]) structures. 4.3. Avalanche injection in bipolar transistors. 4.4. Operation regime of a Si avalanche transistor at very high current densities. 4.5. Operation regime of GaAs avalanche transistor at very high current densities -- 5. Dynamic breakdown. 5.1. Introduction. 5.2. Impact ionization front (TRAPATT zone). 5.3. Silicon Avalanche Sharpers (SAS). 5.4. GaAs diodes with delayed breakdown. 5.5. Superfast switching of GaAs thyristors. 5.6. Main features of streamer breakdown
备用描述
"The aim of this book is to summarize the main experimental results on avalanche and breakdown phenomena in semiconductors and semiconductor devices and to analyze their features from a unified point of view. Attention is focused on the phenomenology of avalanche multiplication and the various kinds of breakdown phenomena and their qualitative analysis." --Book Jacket
开源日期
2010-05-31
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.